1
|
Shan G, Jiang J, Ji L, Li S, Wang Z, Yang S, Shen Q. Evaluation of active substances in gamboge and their mechanisms for the treatment of colorectal cancer by UPLC-MS/MS integrated with network pharmacology. Anal Biochem 2025; 698:115747. [PMID: 39647807 DOI: 10.1016/j.ab.2024.115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
Gamboge exhibits anti-colorectal cancer (CRC) activity, however, its active compounds and the underlying mechanisms remain unclear. Herein, a liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for determining gambogellic acid, β-morellic acid, isogambogenic acid, gambogenic acid, R-gambogic acid, S-gambogic acid, and hydroxygambogic acid in gamboge was established. The key parameters including ion transitions, voltages, LOD, and LOQ were determined, with LOD ranging from 0.8 to 2.0 ng mL-1 and LOQ from 2.7 to 6.7 ng mL-1. The recovery rates were found to be between 95.6 % and 103.5 %. Furthermore, the active compounds were successfully determined, and molecular mechanisms of gamboge in treating CRC were explored. Network pharmacology revealed a "compound-target-pathway" network where the seven compounds could target key proteins, modulate PI3K-Akt and JAK-STAT pathways, and inhibit CRC development. Molecular docking validated SRC, SATA3, PIK3CA, among others, as potential targets for the active compounds in CRC intervention. In conclusion, this method significantly reduces analysis time and improves efficiency relative to existing approaches, making it highly suitable for the effective determination of multiple compounds in the quality control of gamboge materials.
Collapse
Affiliation(s)
- Guodong Shan
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiajun Jiang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Liting Ji
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Shiyan Li
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Zejun Wang
- Laboratory of Medicine-Food Homology Innovation and Achievement Transformation, Linping Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, 311110, China.
| | - Shaohui Yang
- Department of Colorectal Surgery, Lihuili Hospital, Ningbo Medical Center, Ningbo, 315040, China.
| | - Qing Shen
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China; Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
2
|
Zhang D, Chen Y, Sun Y, Xu H, Wei R, Zhou Y, Li F, Li J, Wang J, Chen P, Xi L. Gambogic acid induces GSDME dependent pyroptotic signaling pathway via ROS/P53/Mitochondria/Caspase-3 in ovarian cancer cells. Biochem Pharmacol 2025; 232:116695. [PMID: 39643123 DOI: 10.1016/j.bcp.2024.116695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/27/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Gambogic acid (GA) is a naturally active compound extracted from the Garcinia hanburyi with various anticancer activities. However, whether GA induces pyroptosis (a newly discovered inflammation-mediated programmed cell death mechanism) in ovarian cancer (OC) has not yet been reported. This study revealed that GA treatment reduced cell viability by inducing pyroptosis in OC cell lines. Typical pyroptosis morphological manifestations such as cell swelling with large bubbles and loss of cell membrane integrity, were observed. Cleaved caspase-3 and GSDME-N levels increased after GA treatment, and knocking out GSDME or using a caspase-3 inhibitor could switch GA-induced cell death from pyroptosis to apoptosis, indicating GA induced caspase-3/GSDME-dependent pyroptosis. Furthermore, this research indicated that GA significantly increased reactive oxygen species (ROS) and p53 phosphorylation. OC cells pretreated with ROS inhibitor N-Acetylcysteine (NAC) and the specific p53 inhibitor pifithrin-μ could completely reverse the pyroptosis post-treatment. Elevated p53 and phosphorylated p53 reduced mitochondrial membrane potential (MMP) and Bcl-2, increase the expression of Bax, and damage mitochondria by releasing cytochrome c to activate the downstream pyroptosis pathway. Different doses of GA inhibited tumor growth in ID8 tumor-bearing mice, and high-dose GA increased in tumor-infiltrating lymphocytes CD3, CD4, and CD8 were detected in tumor tissues. Notably, the expressions of GSDME-N, cleaved caspase-3 and other proteins were increased in tumor tissues with high-dose GA groups. These findings demonstrate that GA-treated OC cells could induce GSDME-mediated pyroptosis through the ROS/p53/mitochondria signaling pathway and caspase-3/-9 activation. Thus, GA is a promising therapeutic agent for OC treatment.
Collapse
Affiliation(s)
- Danya Zhang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuxin Chen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yue Sun
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hanjie Xu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Department of Obstetrics and Gynecology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Rui Wei
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fei Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jie Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Pingbo Chen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Ling Xi
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
3
|
Fan X, Lv C, Xue M, Meng P, Qian X. Fe 3O 4 nanoparticles containing gambogic acid inhibit metastasis in colorectal cancer via the RORB/EMILIN1 axis. Cell Adh Migr 2024; 18:38-53. [PMID: 39533963 PMCID: PMC11562916 DOI: 10.1080/19336918.2024.2427585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/04/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
This research aims to study the effect of magnetic nanoparticles of Fe3O4 (MNP Fe3O4) containing gambogic acid (GA-MNP Fe3O4) on colorectal cancer (CRC). MNP Fe3O4 enhanced the antitumor effect of GA by inhibiting the malignant behavior of CRC cells. RORB was a target of GA, and GA activated RORB expression to inhibit metastasis of CRC. Knockdown of RORB impaired the effect of GA-MNP Fe3O4 on CRC metastasis. EMILIN1 was a target of RORB, and RORB promoted transcription of EMILIN1. Overexpression of EMILIN1 reversed the effect of knockdown of RORB on GA-MNP Fe3O4 and inhibited metastasis in CRC. These findings revealed that MNP Fe3O4 enhanced the antitumor effect of GA and activated RORB to promote EMILIN1 transcription and inhibit CRC metastasis.
Collapse
Affiliation(s)
- Xiaodong Fan
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Thyroid and Breast Oncological Surgery, Xuzhou Medical College Affiliated Huaian Hospital, Huaian, China
| | - Chunyang Lv
- Department of Hepatobiliary Surgery, Xuzhou Medical College Affiliated Huaian Hospital, Huaian, China
| | - Meiling Xue
- Department of Thyroid and Breast Oncological Surgery, Xuzhou Medical College Affiliated Huaian Hospital, Huaian, China
| | - Peng Meng
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, China
| | - Xiaoping Qian
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Wang PF, Yang Y, Patel V, Neiner A, Kharasch ED. Natural Products Inhibition of Cytochrome P450 2B6 Activity and Methadone Metabolism. Drug Metab Dispos 2024; 52:252-265. [PMID: 38135504 PMCID: PMC10877711 DOI: 10.1124/dmd.123.001578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023] Open
Abstract
Methadone is cleared predominately by hepatic cytochrome P450 (CYP) 2B6-catalyzed metabolism to inactive metabolites. CYP2B6 also catalyzes the metabolism of several other drugs. Methadone and CYP2B6 are susceptible to pharmacokinetic drug-drug interactions. Use of natural products such as herbals and other botanicals is substantial and growing, and concomitant use of prescription medicines and non-prescription herbals is common and may result in interactions, often precipitated by CYP inhibition. Little is known about herbal product effects on CYP2B6 activity, and CYP2B6-catalyzed methadone metabolism. We screened a family of natural product compounds used in traditional medicines, herbal teas, and synthetic analogs of compounds found in plants, including kavalactones, flavokavains, chalcones and gambogic acid, for inhibition of expressed CYP2B6 activity and specifically inhibition of CYP2B6-mediated methadone metabolism. An initial screen evaluated inhibition of CYP2B6-catalyzed 7-ethoxy-4-(trifluoromethyl) coumarin O-deethylation. Hits were further evaluated for inhibition of racemic methadone metabolism, including mechanism of inhibition and kinetic constants. In order of decreasing potency, the most effective inhibitors of methadone metabolism were dihydromethysticin (competitive, K i 0.074 µM), gambogic acid (noncompetitive, K i 6 µM), and 2,2'-dihydroxychalcone (noncompetitive, K i 16 µM). Molecular modeling of CYP2B6-methadone and inhibitor binding showed substrate and inhibitor binding position and orientation and their interactions with CYP2B6 residues. These results show that CYP2B6 and CYP2B6-catalyzed methadone metabolism are inhibited by certain natural products, at concentrations which may be clinically relevant. SIGNIFICANCE STATEMENT: This investigation identified several natural product constituents which inhibit in vitro human recombinant CYP2B6 and CYP2B6-catalyzed N-demethylation of the opioid methadone. The most potent inhibitors (K i) were dihydromethysticin (0.074 µM), gambogic acid (6 µM) and 2,2'-dihydroxychalcone (16 µM). Molecular modeling of ligand interactions with CYP2B6 found that dihydromethysticin and 2,2'-dihydroxychalcone bound at the active site, while gambogic acid interacted with an allosteric site on the CYP2B6 surface. Natural product constituents may inhibit CYP2B6 and methadone metabolism at clinically relevant concentrations.
Collapse
Affiliation(s)
- Pan-Fen Wang
- Department of Anesthesiology, Duke University, Durham, North Carolina (P.-F.W., E.D.K.) and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri (Y.Y., V.P., A.N.)
| | - Yanming Yang
- Department of Anesthesiology, Duke University, Durham, North Carolina (P.-F.W., E.D.K.) and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri (Y.Y., V.P., A.N.)
| | - Vishal Patel
- Department of Anesthesiology, Duke University, Durham, North Carolina (P.-F.W., E.D.K.) and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri (Y.Y., V.P., A.N.)
| | - Alicia Neiner
- Department of Anesthesiology, Duke University, Durham, North Carolina (P.-F.W., E.D.K.) and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri (Y.Y., V.P., A.N.)
| | - Evan D Kharasch
- Department of Anesthesiology, Duke University, Durham, North Carolina (P.-F.W., E.D.K.) and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri (Y.Y., V.P., A.N.)
| |
Collapse
|
5
|
Lv Y, Li W, Liao W, Jiang H, Liu Y, Cao J, Lu W, Feng Y. Nano-Drug Delivery Systems Based on Natural Products. Int J Nanomedicine 2024; 19:541-569. [PMID: 38260243 PMCID: PMC10802180 DOI: 10.2147/ijn.s443692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Natural products have proven to have significant curative effects and are increasingly considered as potential candidates for clinical prevention, diagnosis, and treatment. Compared with synthetic drugs, natural products not only have diverse structures but also exhibit a range of biological activities against different disease states and molecular targets, making them attractive for development in the field of medicine. Despite advancements in the use of natural products for clinical purposes, there remain obstacles that hinder their full potential. These challenges include issues such as limited solubility and stability when administered orally, as well as short durations of effectiveness. To address these concerns, nano-drug delivery systems have emerged as a promising solution to overcome the barriers faced in the clinical application of natural products. These systems offer notable advantages, such as a large specific surface area, enhanced targeting capabilities, and the ability to achieve sustained and controlled release. Extensive in vitro and in vivo studies have provided further evidence supporting the efficacy and safety of nanoparticle-based systems in delivering natural products in preclinical disease models. This review describes the limitations of natural product applications and the current status of natural products combined with nanotechnology. The latest advances in nano-drug delivery systems for delivery of natural products are considered from three aspects: connecting targeting warheads, self-assembly, and co-delivery. Finally, the challenges faced in the clinical translation of nano-drugs are discussed.
Collapse
Affiliation(s)
- Ying Lv
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wenqing Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wei Liao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Haibo Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Yuwei Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Jiansheng Cao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wenfei Lu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Yufei Feng
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| |
Collapse
|
6
|
Ye X, Xiang F, Hu Y. Gambogic acid affects high glucose-induced apoptosis and inflammation of retinal endothelial cells through the NOX4/NLRP3 pathway. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:168. [PMID: 36923084 PMCID: PMC10009560 DOI: 10.21037/atm-22-6591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023]
Abstract
Background This study aimed to investigate the effect and mechanism of gambogic acid (GA) on the apoptosis and inflammation of human retinal endothelial cells (HRECs) under high glucose conditions. Methods HRECs were cultured in a high glucose medium to simulate retinal endothelial cell injury induced by diabetic retinopathy. Flow cytometry was used to analyze the apoptosis level of HRECs. Cell viability was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Western blotting was applied to detect the intracellular apoptosis-related proteins and expression levels of NADPH oxidase 4 (NOX4), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), and interleukin (IL)-1β. Enzyme linked immunosorbent assay (ELISA) was utilized to detect the expression of IL-6, IL-8, IL-10, and tumor necrosis factor-α (TNF-α) in the cell supernatants. The messenger RNA (mRNA) levels of IL-6, IL-8, IL-10, and TNF-α were detected by reverse transcription-polymerase chain reaction (RT-qPCR). Results We observed that high glucose induced the apoptosis and inflammation of HRECs. In addition, the high glucose environment promoted NOX/NLRP3 pathway activation. The activity of HRECs was not significantly affected by the presence of 20 μM or less of GA, and 15 μM of GA could restore the diminished activity of HRECs induced by high glucose. The apoptosis of HRECs cultured under high glucose conditions was significantly inhibited (P<0.05), the levels of IL-6, IL-8, and TNF-α in the cell supernatant were significantly decreased (P<0.05), and the levels of IL-10 were significantly increased (P<0.05). Meanwhile, the relative mRNA expression levels of IL-6, IL-8, and TNF-α in HRECs were significantly decreased (P<0.05), while those of IL-10 were significantly increased (P<0.05). The activity of the high glucose-induced NOX4/NLRP3 pathway in HRECs was significantly inhibited after treatment with 15 μM of GA (P<0.05). Following activation of the NOX4/NLRP3 pathway in HRECs, the apoptosis level was significantly increased (P<0.05), and the inflammatory response was aggravated (P<0.05). Inhibiting the activity of the intracellular NOX4/NLRP3 pathway markedly inhibited cell apoptosis and the inflammatory response (P<0.05). Conclusions GA can inhibit the apoptosis and inflammation of HRECs under high glucose conditions by inhibiting the activity of the NOX4/NLRP3 pathway. This has a significant inhibitory effect on diabetic retinopathy, which is worthy of further study.
Collapse
Affiliation(s)
- Xiaojing Ye
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feng Xiang
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyi Hu
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Izuegbuna OO. Polyphenols: Chemoprevention and therapeutic potentials in hematological malignancies. Front Nutr 2022; 9:1008893. [PMID: 36386899 PMCID: PMC9643866 DOI: 10.3389/fnut.2022.1008893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2024] Open
Abstract
Polyphenols are one of the largest plant-derived natural product and they play an important role in plants' defense as well as in human health and disease. A number of them are pleiotropic molecules and have been shown to regulate signaling pathways, immune response and cell growth and proliferation which all play a role in cancer development. Hematological malignancies on the other hand, are cancers of the blood. While current therapies are efficacious, they are usually expensive and with unwanted side effects. Thus, the search for newer less toxic agents. Polyphenols have been reported to possess antineoplastic properties which include cell cycle arrest, and apoptosis via multiple mechanisms. They also have immunomodulatory activities where they enhance T cell activation and suppress regulatory T cells. They carry out these actions through such pathways as PI3K/Akt/mTOR and the kynurenine. They can also reverse cancer resistance to chemotherapy agents. In this review, i look at some of the molecular mechanism of action of polyphenols and their potential roles as therapeutic agents in hematological malignancies. Here i discuss their anti-proliferative and anti-neoplastic activities especially their abilities modulate signaling pathways as well as immune response in hematological malignancies. I also looked at clinical studies done mainly in the last 10-15 years on various polyphenol combination and how they enhance synergism. I recommend that further preclinical and clinical studies be carried out to ensure safety and efficacy before polyphenol therapies be officially moved to the clinics.
Collapse
Affiliation(s)
- Ogochukwu O. Izuegbuna
- Department of Haematology, Ladoke Akintola University of Technology (LAUTECH) Teaching Hospital, Ogbomoso, Nigeria
| |
Collapse
|
8
|
Arevalo GE, Frank MK, Decker KS, Theodoraki MA, Theodorakis EA. Gambogic acid: Multi-gram scale isolation, stereochemical erosion toward epi-gambogic acid and biological profile. FRONTIERS IN NATURAL PRODUCTS 2022; 1:1018765. [PMID: 39211297 PMCID: PMC11361287 DOI: 10.3389/fntpr.2022.1018765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Introduction Extracted from gamboge resin, gambogic acid (GBA) is a natural product that displays a complex caged xanthone structure and exhibits promising antitumor properties. However, efforts to advance this compound to clinical applications have been thwarted by its limited availability that in turn, restricts its pharmacological optimization. Methods We report here an efficient method that allows multigram scale isolation of GBA in greater than 97% diastereomeric purity from various sources of commercially available gamboge. The overall process includes: (a) isolation of organic components from the resin; (b) separation of GBA from the organic components via crystallization as its pyridinium salt; and (c) acidification of the salt to isolate the free GBA. Results and Discussion We found that GBA is susceptible to epimerization at the C2 center that produces epi-gambogic acid ( epi-GBA), a common contaminant of all commercial sources of this compound. Mechanistic studies indicate that this epimerization proceeds via an ortho-quinone methide intermediate. Although the observed stereochemical erosion accounts for the chemical fragility of GBA, it does not significantly affect its biological activity especially as it relates to cancer cell cytotoxicity. Specifically, we measured similar levels of cytotoxicity for either pure GBA or an equilibrated mixture of GBA/ epi-GBA in MBA-MB-231 cells with IC50 values at submicromolar concentration and induction of apoptosis after 12 hours of incubation. The results validate the pharmacological promise of gambogic acid and, combined with the multigram-scale isolation, should enable drug design and development studies.
Collapse
Affiliation(s)
- Gary E. Arevalo
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Michelle K. Frank
- Department of Biology, Arcadia University, Glenside, PA, United States
| | - Katelin S. Decker
- Department of Biology, Arcadia University, Glenside, PA, United States
| | | | - Emmanuel A. Theodorakis
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|