1
|
Lens M. Phospholipid-Based Vesicular Systems as Carriers for the Delivery of Active Cosmeceutical Ingredients. Int J Mol Sci 2025; 26:2484. [PMID: 40141127 PMCID: PMC11942248 DOI: 10.3390/ijms26062484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/25/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Cosmeceuticals are cosmetic products containing biologically active ingredients claiming to have drug-like benefits. In recent years, there has been a growing global demand for cosmeceuticals focusing on visible improvement of skin appearance and health. However, modern consumers are increasingly more concerned about the performance and clinical efficacy of cosmetic formulations. One of the main disadvantages of cosmeceutical preparations is the poor transdermal delivery of active ingredients included in the formulation. In response to this challenge, many phospholipid-based nanovesicular delivery systems have been developed and tested in recent years to increase the skin penetration of active cosmetic molecules. This review provides a comprehensive overview of current knowledge in the research and development of liposomal encapsulation used as delivery system in skincare and cosmeceutical products.
Collapse
Affiliation(s)
- Marko Lens
- Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
2
|
Alecu A, Albu C, Badea GI, Alionte A, Enache AA, Radu GL, Litescu SC. Infrared Laser-Assisted Extraction of Bioactive Compounds from Rosa canina L. Int J Mol Sci 2025; 26:992. [PMID: 39940761 PMCID: PMC11817665 DOI: 10.3390/ijms26030992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
The extraction of bio-compounds from medicinal plants provides opportunities for using the plant extract for health benefits. Rosa canina L. is considered a "natural superfood", and the valorization of its active compounds requires an extraction technique that ensures a suitable extraction yield while preserving the compounds' activity. In our study, infrared laser irradiation (IRLIR) technology was used for the first time in the bioactive compound's extraction from Rosa canina L. Different solvents (water-ethanol, hexane-ethanol) and different extraction times were tested to obtain a high extraction yield. Chromatographic and spectrophotometry methods were used to monitor the profile of bioactive compounds and the antioxidant activity of the extracts. The results obtained for IRLIR were compared with those obtained by accelerated solvent extraction (ASE), an advanced extraction method. The IRLIR technology proved to be a more reliable analytical tool for the extraction of (+)-catechin, gallic acid, and lutein. In addition, a richer extract formula was obtained by IRLIR extraction with respect to ASE, with the IRLIR process ensuring a short extraction time, low volume of the extraction solvent, low energy consumption, and a less expensive device.
Collapse
Affiliation(s)
- Andreia Alecu
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania; (A.A.); (C.A.); (G.-I.B.); (A.A.); (G.-L.R.)
| | - Camelia Albu
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania; (A.A.); (C.A.); (G.-I.B.); (A.A.); (G.-L.R.)
| | - Georgiana-Ileana Badea
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania; (A.A.); (C.A.); (G.-I.B.); (A.A.); (G.-L.R.)
| | - Aurelia Alionte
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania; (A.A.); (C.A.); (G.-I.B.); (A.A.); (G.-L.R.)
| | | | - Gabriel-Lucian Radu
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania; (A.A.); (C.A.); (G.-I.B.); (A.A.); (G.-L.R.)
| | - Simona-Carmen Litescu
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania; (A.A.); (C.A.); (G.-I.B.); (A.A.); (G.-L.R.)
| |
Collapse
|
3
|
Rossello S, Mandrone M, Cerchiara T, Chiocchio I, Rossi M, Chinnici F, Sallustio V, Aponte M, Blaiotta G, Luppi B, Abruzzo A, Bigucci F, Cappadone C. A New Wound-Healing Tool Based on Glycyrrhiza glabra Extract-Loaded Ufasomes on Spanish Broom Dressings. Molecules 2024; 29:3811. [PMID: 39202890 PMCID: PMC11357027 DOI: 10.3390/molecules29163811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
The development of innovative products for restoring skin integrity and promoting wound healing is still a challenge. The aim of this work was to evaluate an innovative Spanish broom wound dressing impregnated with Glycyrrhiza glabra extract-loaded ufasomes to improve wound healing. Ufasomes were characterized in terms of size, polydispersity index, entrapment efficiency, zeta potential, and stability. In addition, in vitro release studies and biocompatibility, biosafety, and scratch tests on WS1 fibroblasts were performed. The loaded ufasomes showed a nanometric size (<250 nm), good size distribution (lower than 0.3), and appropriate encapsulation efficiency (~67%). Moreover, the lipid vesicles showed good stability during the storage period and allowed for a slow release of glycyrrhizin, the main bioactive compound of the extract. Biological studies revealed that loaded vesicles are not cytotoxic, are hemocompatible, and lead to the complete closure of the scratch after about 33 h. To conclude, the results suggest that the developed dressings can be efficiently used to promote the healing process.
Collapse
Affiliation(s)
- Simone Rossello
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (S.R.); (V.S.); (A.A.); (F.B.)
| | - Manuela Mandrone
- Pharmaceutical Botany Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40127 Bologna, Italy; (M.M.); (I.C.)
| | - Teresa Cerchiara
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (S.R.); (V.S.); (A.A.); (F.B.)
| | - Ilaria Chiocchio
- Pharmaceutical Botany Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40127 Bologna, Italy; (M.M.); (I.C.)
| | - Martina Rossi
- Pharmaceutical Biochemistry Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (M.R.); (C.C.)
| | - Fabio Chinnici
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale Fanin 40, 40127 Bologna, Italy;
| | - Valentina Sallustio
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (S.R.); (V.S.); (A.A.); (F.B.)
| | - Maria Aponte
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici, Italy; (M.A.); (G.B.)
| | - Giuseppe Blaiotta
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici, Italy; (M.A.); (G.B.)
| | - Barbara Luppi
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (S.R.); (V.S.); (A.A.); (F.B.)
| | - Angela Abruzzo
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (S.R.); (V.S.); (A.A.); (F.B.)
| | - Federica Bigucci
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (S.R.); (V.S.); (A.A.); (F.B.)
| | - Concettina Cappadone
- Pharmaceutical Biochemistry Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (M.R.); (C.C.)
| |
Collapse
|
4
|
Esposito E, Pecorelli A, Ferrara F, Lila MA, Valacchi G. Feeding the Body Through the Skin: Ethosomes and Transethosomes as a New Topical Delivery System for Bioactive Compounds. Annu Rev Food Sci Technol 2024; 15:53-78. [PMID: 38941493 DOI: 10.1146/annurev-food-072023-034528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Because the feeding of our body through the oral route can be associated with many drawbacks due to the degradation of natural molecules during transit in the gastrointestinal tract, a transdermal delivery strategy, usually employed in the pharmaceutical field, can present an effective alternative for delivery of bioactives and nutrients from foods. In this review, the chance to feed the body with nutritive and bioactive molecules from food through transdermal administration is discussed. Various nanotechnological devices employed for topical and transdermal delivery of bioactive compounds are described. In addition, mechanisms underlying their potential use in the delivery of nutritive molecules, as well as their capability to efficaciously reach the dermis and promote systemic distribution, are detailed.
Collapse
Affiliation(s)
- Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mary Ann Lila
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, North Carolina, USA
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
- Department of Animal Science, North Carolina State University, Kannapolis, North Carolina, USA;
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
5
|
Sallustio V, Rossi M, Mandrone M, Rossi F, Chiocchio I, Cerchiara T, Longo E, Fratini M, D'Amico L, Tromba G, Malucelli E, Protti M, Mercolini L, Di Blasio A, Aponte M, Blaiotta G, Abruzzo A, Bigucci F, Luppi B, Cappadone C. A promising eco-sustainable wound dressing based on cellulose extracted from Spartium junceum L. and impregnated with Glycyrrhiza glabra L extract: Design, production and biological properties. Int J Biol Macromol 2024; 272:132883. [PMID: 38838898 DOI: 10.1016/j.ijbiomac.2024.132883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Glycyrrhiza glabra extract is widely known for its antioxidant and anti-inflammatory properties and can improve the wound healing process. The aim of this work was to shorten the time of the healing process by using an eco-sustainable wound dressing based on Spanish broom flexible cellulosic fabric by impregnation with G. glabra extract-loaded ethosomes. Chemical analysis of G. glabra extract was performed by LC-DAD-MS/MS and its encapsulation into ethosomes was obtained using the ethanol injection method. Lipid vesicles were characterized in terms of size, polydispersity index, entrapment efficiency, zeta potential, and stability. In vitro release studies, biocompatibility, and scratch test on 3T3 fibroblasts were performed. Moreover, the structure of Spanish broom dressing and its ability to absorb wound exudate was characterized by Synchrotron X-ray phase contrast microtomography (SR-PCmicroCT). Ethosomes showed a good entrapment efficiency, nanometric size, good stability over time and a slow release of polyphenols compared to the free extract, and were not cytotoxic. Lastly, the results revealed that Spanish broom wound dressing loaded with G. glabra ethosomes is able to accelerate wound closure by reducing wound healing time. To sum up, Spanish broom wound dressing could be a potential new green tool for biomedical applications.
Collapse
Affiliation(s)
- V Sallustio
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - M Rossi
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - M Mandrone
- Pharmaceutical Botany Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40127 Bologna, Italy.
| | - F Rossi
- Pharmaceutical Biochemistry Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; CRMBM, CNRS, Aix Marseille University, 13385 Marseille, France.
| | - I Chiocchio
- Pharmaceutical Botany Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40127 Bologna, Italy.
| | - T Cerchiara
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - E Longo
- Elettra-Sincrotrone Trieste S.C.p.A 34149, Basovizza, Trieste, Italy.
| | - M Fratini
- CNR-Nanotec (Roma unit) c/o Department of Physics, La Sapienza University Piazzale Aldo Moro, 5-00185 Rome (Italy) & IRCCS Fondazione Santa Lucia, Via Ardeatina, 306-00179 Rome, Italy.
| | - L D'Amico
- Department of Physics, University of Trieste, Trieste, Italy.
| | - G Tromba
- Elettra-Sincrotrone Trieste S.C.p.A 34149, Basovizza, Trieste, Italy.
| | - E Malucelli
- Pharmaceutical Biochemistry Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - M Protti
- Pharmaco-Toxicological Analysis (PTA Lab.), Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| | - L Mercolini
- Pharmaco-Toxicological Analysis (PTA Lab.), Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| | - A Di Blasio
- Department of Agricultural Sciences, University of Naples "Federico II", 80055 Portici, Italy.
| | - M Aponte
- Department of Agricultural Sciences, University of Naples "Federico II", 80055 Portici, Italy.
| | - G Blaiotta
- Department of Agricultural Sciences, University of Naples "Federico II", 80055 Portici, Italy.
| | - A Abruzzo
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - F Bigucci
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - B Luppi
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - C Cappadone
- Pharmaceutical Biochemistry Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| |
Collapse
|
6
|
Oargă (Porumb) DP, Cornea-Cipcigan M, Cordea MI. Unveiling the mechanisms for the development of rosehip-based dermatological products: an updated review. Front Pharmacol 2024; 15:1390419. [PMID: 38666029 PMCID: PMC11043540 DOI: 10.3389/fphar.2024.1390419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Rosa spp., commonly known as rosehips, are wild plants that have traditionally been employed as herbal remedies for the treatment of a wide range of disorders. Rosehip is a storehouse of vitamins, including A, B complex, C, and E. Among phytonutrients, vitamin C is found in the highest amount. As rosehips contain significant levels of vitamin C, they are perfect candidates for the development of skincare formulations that can be effectively used in the treatment of different skin disorders (i.e., scarring, anti-aging, hyperpigmentation, wrinkles, melasma, and atopic dermatitis). This research focuses on the vitamin C content of several Rosa sp. by their botanical and geographic origins, which according to research studies are in the following order: R. rugosa > R. montana > R. canina > R. dumalis, with lower levels in R. villosa and R. arvensis, respectively. Among rosehip species, R. canina is the most extensively studied species which also displays significant amounts of bioactive compounds, but also antioxidant, and antimicrobial activities (e.g., against Propionibacterium acnes, Staphylococcus aureus, S, epidermis, and S. haemolyticus). The investigation also highlights the use of rosehip extracts and oils to minimise the harmful effects of acne, which primarily affects teenagers in terms of their physical appearance (e.g., scarring, hyperpigmentation, imperfections), as well as their moral character (e.g., low self-confidence, bullying). Additionally, for higher vitamin C content from various rosehip species, the traditional (i.e., infusion, maceration, Soxhlet extraction) and contemporary extraction methods (i.e., supercritical fluid extraction, microwave-assisted, ultrasonic-assisted, and enzyme-assisted extractions) are highlighted, finally choosing the best extraction method for increased bioactive compounds, with emphasis on vitamin C content. Consequently, the current research focuses on assessing the potential of rosehip extracts as medicinal agents against various skin conditions, and the use of rosehip concentrations in skincare formulations (such as toner, serum, lotion, and sunscreen). Up-to-date studies have revealed that rosehip extracts are perfect candidates as topical application products in the form of nanoemulsions. Extensive in vivo studies have revealed that rosehip extracts also exhibit specific activities against multiple skin disorders (i.e., wound healing, collagen synthesis, atopic dermatitis, melasma, and anti-aging effects). Overall, with multiple dermatological actions and efficacies, rosehip extracts and oils are promising agents that require a thorough investigation of their functioning processes to enable their safe use in the skincare industry.
Collapse
Affiliation(s)
| | - Mihaiela Cornea-Cipcigan
- Laboratory of Cell Analysis and Plant Breeding, Department of Horticulture, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Mirela Irina Cordea
- Laboratory of Cell Analysis and Plant Breeding, Department of Horticulture, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
7
|
Belkhelladi M, Bougrine A. Rosehip extract and wound healing: A review. J Cosmet Dermatol 2024; 23:62-67. [PMID: 37605366 DOI: 10.1111/jocd.15971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/25/2023] [Accepted: 08/13/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Each year, over 100 million patients are afflicted with new scars from medical procedures worldwide. Natural compounds have shown promise in the treatment of scars and skin disorders. Rosehip oil (RO), produced from the pressed fruit of the rosehip (Rosa canina L.) plant, is used in the pharmaceutical, cosmetic, and food industries. The use of this plant in the treatment of scars has yet to be reviewed. AIMS This review aims to analyze the current findings on the use of RO in the treatment of postsurgical scars. METHODS This literature search considered published journal articles (clinical trials or literature reviews). Studies were identified by searching electronic databases (PubMed and MEDLINE) and reference lists of respective articles. Additional articles were identified through Google Scholar. Only articles available in English were included in this review. RESULTS There is a scarcity of high-quality studies assessing the therapeutic potential of RO. From the two human clinical trials using RO, there is some evidence to suggest its potential as an active ingredient in topical formulations for the treatment of wounds. Topical treatments containing RO extract may reduce the size and erythema of postsurgical scars through the polarization of macrophages and the inhibition of inflammatory cytokines. CONCLUSIONS Some evidence suggests that RO may improve postsurgical scars. At present, there is insufficient evidence to recommend the use of RO for the treatment of wounds. Further investigation is required to establish its therapeutic effects on human skin and its potential use as an ingredient in topical formulations.
Collapse
|
8
|
Aituarova A, Zhusupova GE, Zhussupova A, Ross SA. Study of the Chemical Composition of Rosa beggeriana Schrenk's Fruits and Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:3297. [PMID: 37765460 PMCID: PMC10536339 DOI: 10.3390/plants12183297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
Rosa species are widely used in folk medicine in different countries of Asia and Europe, but not all species are studied in-depth. For instance, Rosa beggeriana Schrenk, a plant which grows in Central Asia, Iran, and some parts of China, is little described in articles. Column and thin-layer chromatography methods were used to isolate biologically active substances. From a study of fruits and leaves of Rosa beggeriana Schrenk, a large number of compounds were identified, seven of which were isolated: 3β,23-dihydroxyurs-12-ene (1), β-sitosterol (2), betulin (3), (+)-catechin (4), lupeol (5), ethyl linoleate (6), and ethyl linolenoate (7). Their structures were elucidated by 1H, DEPT and 13C NMR spectroscopy, mass spectrometry, and GC-MS (gas chromatography-mass spectrometry). The study also identified the structures of organic compounds, including volatile esters and acids. Consequently, comprehensive data were acquired concerning the chemical constitution of said botanical specimen.
Collapse
Affiliation(s)
- Aigerim Aituarova
- Department of Chemistry and Technology of Organic Substances, Natural Compounds and Polymers, NPJSC Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan;
| | - Galiya E. Zhusupova
- Department of Chemistry and Technology of Organic Substances, Natural Compounds and Polymers, NPJSC Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan;
| | - Aizhan Zhussupova
- Department of Molecular Biology and Genetics, NPJSC Al-Farabi Kazakh National University, Al-Farabi, Ave. 71, Almaty 050040, Kazakhstan;
| | - Samir A. Ross
- School of Pharmacy, University of Mississippi, P.O. Box 1848, Oxford, MS 38677, USA;
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| |
Collapse
|
9
|
Krajewska A, Dziki D. Enrichment of Cookies with Fruits and Their By-Products: Chemical Composition, Antioxidant Properties, and Sensory Changes. Molecules 2023; 28:molecules28104005. [PMID: 37241744 DOI: 10.3390/molecules28104005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Cookies made from wheat have become increasingly popular as a snack due to their various advantages, such as their convenience as a ready-to-eat and easily storable food item, wide availability in different types, and affordability. Especially in recent years, there has been a trend towards enriching food with fruit additives, which increase the health-promoting properties of the products. The aim of this study was to examine current trends in fortifying cookies with fruits and their byproducts, with a particular focus on the changes in chemical composition, antioxidant properties, and sensory attributes. As indicated by the results of studies, the incorporation of powdered fruits and fruit byproducts into cookies helps to increase their fiber and mineral content. Most importantly, it significantly enhances the nutraceutical potential of the products by adding phenolic compounds with high antioxidant capacity. Enriching shortbread cookies is a challenge for both researchers and producers because the type of fruit additive and level of substitution can diversely affect sensory attributes of cookies such as color, texture, flavor, and taste, which have an impact on consumer acceptability.
Collapse
Affiliation(s)
- Anna Krajewska
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka St., 20-612 Lublin, Poland
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka St., 20-612 Lublin, Poland
| |
Collapse
|
10
|
Sallustio V, Farruggia G, di Cagno MP, Tzanova MM, Marto J, Ribeiro H, Goncalves LM, Mandrone M, Chiocchio I, Cerchiara T, Abruzzo A, Bigucci F, Luppi B. Design and Characterization of an Ethosomal Gel Encapsulating Rosehip Extract. Gels 2023; 9:gels9050362. [PMID: 37232954 DOI: 10.3390/gels9050362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Rising environmental awareness drives green consumers to purchase sustainable cosmetics based on natural bioactive compounds. The aim of this study was to deliver Rosa canina L. extract as a botanical ingredient in an anti-aging gel using an eco-friendly approach. Rosehip extract was first characterized in terms of its antioxidant activity through a DPPH assay and ROS reduction test and then encapsulated in ethosomal vesicles with different percentages of ethanol. All formulations were characterized in terms of size, polydispersity, zeta potential, and entrapment efficiency. Release and skin penetration/permeation data were obtained through in vitro studies, and cell viability was assessed using an MTT assay on WS1 fibroblasts. Finally, ethosomes were incorporated in hyaluronic gels (1% or 2% w/v) to facilitate skin application, and rheological properties were studied. Rosehip extract (1 mg/mL) revealed a high antioxidant activity and was successfully encapsulated in ethosomes containing 30% ethanol, having small sizes (225.4 ± 7.0 nm), low polydispersity (0.26 ± 0.02), and good entrapment efficiency (93.41 ± 5.30%). This formulation incorporated in a hyaluronic gel 1% w/v showed an optimal pH for skin application (5.6 ± 0.2), good spreadability, and stability over 60 days at 4 °C. Considering sustainable ingredients and eco-friendly manufacturing technology, the ethosomal gel of rosehip extract could be an innovative and green anti-aging skincare product.
Collapse
Affiliation(s)
- Valentina Sallustio
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Giovanna Farruggia
- Pharmaceutical Biochemistry Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Massimiliano Pio di Cagno
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Saelands vei 3, 0371 Oslo, Norway
| | - Martina M Tzanova
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Saelands vei 3, 0371 Oslo, Norway
| | - Joana Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-038 Lisboa, Portugal
| | - Helena Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-038 Lisboa, Portugal
| | - Lidia Maria Goncalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-038 Lisboa, Portugal
| | - Manuela Mandrone
- Pharmaceutical Botany Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40127 Bologna, Italy
| | - Ilaria Chiocchio
- Pharmaceutical Botany Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40127 Bologna, Italy
| | - Teresa Cerchiara
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Angela Abruzzo
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Federica Bigucci
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Barbara Luppi
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| |
Collapse
|