1
|
Sharma P, Sharma S, Yadav Y, Shukla P, Sagar R. Current pharmacophore based approaches for the development of new anti-Alzheimer's agents. Bioorg Med Chem 2024; 113:117926. [PMID: 39306973 DOI: 10.1016/j.bmc.2024.117926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 10/13/2024]
Abstract
Amyloid beta peptide (Aβ) and hyperphosphorylated neuronal tau proteins accumulate in neurofibrillary tangles in Alzheimer's disease (AD), a chronic neurodegenerative illness. Chronic inflammation in the brain, which promotes disease progression, is another feature of the Alzheimer's disease pathogenesis. Approximately 60-70 % of dementia cases are caused by AD. The development of effective therapies for the treatment of AD is urgently needed given the severity of the condition and its rapidly rising prevalence. Cholinesterase inhibitors, beta-amyloid (A-beta), tau inhibitors, and many other medications are currently used as preventive medicine for AD. These medications can temporarily suppress dementia symptoms but cannot halt or reverse the disease's progression. Many international pharmaceutical companies have tried numerous times to develop an amyloid clearing medication based on the amyloid hypothesis, but without success. Therefore, the amyloid theory may not be entirely plausible. This review mainly covers the recent and important reported pharmacophores as the starting point to discuss already known targets like tau, butyrylcholinesterase, amyloid beta, and acetylcholinesterase and covers the literature between years 2019-2024.
Collapse
Affiliation(s)
- Prachi Sharma
- Department of Chemistry, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | - Sunil Sharma
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Paritosh Shukla
- Department of Chemistry, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India.
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
2
|
Wu X, Ze X, Qin S, Zhang B, Li X, Gong Q, Zhang H, Zhu Z, Xu J. Design, Synthesis, and Biological Evaluation of Novel Tetrahydroacridin Hybrids with Sulfur-Inserted Linkers as Potential Multitarget Agents for Alzheimer's Disease. Molecules 2024; 29:1782. [PMID: 38675602 PMCID: PMC11051924 DOI: 10.3390/molecules29081782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease that can lead to the loss of cognitive function. The progression of AD is regulated by multiple signaling pathways and their associated targets. Therefore, multitarget strategies theoretically have greater potential for treating AD. In this work, a series of new hybrids were designed and synthesized by the hybridization of tacrine (4, AChE: IC50 = 0.223 μM) with pyrimidone compound 5 (GSK-3β: IC50 = 3 μM) using the cysteamine or cystamine group as the connector. The biological evaluation results demonstrated that most of the compounds exhibited moderate to good inhibitory activities against acetylcholinesterase (AChE) and glycogen synthase kinase 3β (GSK-3β). The optimal compound 18a possessed potent dual AChE/GSK-3β inhibition (AChE: IC50 = 0.047 ± 0.002 μM, GSK-3β: IC50 = 0.930 ± 0.080 μM). Further molecular docking and enzymatic kinetic studies revealed that this compound could occupy both the catalytic anionic site and the peripheral anionic site of AChE. The results also showed a lack of toxicity to SH-SY5Y neuroblastoma cells at concentrations of up to 25 μM. Collectively, this work explored the structure-activity relationships of novel tetrahydroacridin hybrids with sulfur-inserted linkers, providing a reference for the further research and development of new multitarget anti-AD drugs.
Collapse
Affiliation(s)
- Xiuyuan Wu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (X.W.); (X.Z.); (S.Q.); (X.L.)
| | - Xiaotong Ze
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (X.W.); (X.Z.); (S.Q.); (X.L.)
| | - Shuai Qin
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (X.W.); (X.Z.); (S.Q.); (X.L.)
| | - Beiyu Zhang
- Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK;
| | - Xinnan Li
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (X.W.); (X.Z.); (S.Q.); (X.L.)
| | - Qi Gong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; (Q.G.); (H.Z.)
| | - Haiyan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; (Q.G.); (H.Z.)
| | - Zheying Zhu
- Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK;
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (X.W.); (X.Z.); (S.Q.); (X.L.)
| |
Collapse
|
3
|
Zhang W, Zhang L, Lv M, Fu Y, Meng X, Wang M, Wang H. Advances in Developing Small Molecule Drugs for Alzheimer's Disease. Curr Alzheimer Res 2024; 21:221-231. [PMID: 39136501 DOI: 10.2174/0115672050329828240805074938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 10/25/2024]
Abstract
Alzheimer's disease (AD) is the most common type of dementia among middle-aged and elderly individuals. Accelerating the prevention and treatment of AD has become an urgent problem. New technology including Computer-aided drug design (CADD) can effectively reduce the medication cost for patients with AD, reduce the cost of living, and improve the quality of life of patients, providing new ideas for treating AD. This paper reviews the pathogenesis of AD, the latest developments in CADD and other small-molecule docking technologies for drug discovery and development; the current research status of small-molecule compounds for AD at home and abroad from the perspective of drug action targets; the future of AD drug development.
Collapse
Affiliation(s)
- Wei Zhang
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Liujie Zhang
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Mingti Lv
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Yun Fu
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Xiaowen Meng
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Mingyong Wang
- School of Medical Technology, Xinxiang Medical University, Xinxiang, China
- Department of Medical Technology, Shangqiu Medical College, Shangqiu, Henan, China
| | - Hecheng Wang
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
- School of Life and Pharmaceutical Science, Dalin University of Technology, Panjin, China
| |
Collapse
|
4
|
Almalki FA. An overview of structure-based activity outcomes of pyran derivatives against Alzheimer's disease. Saudi Pharm J 2023; 31:998-1018. [PMID: 37234350 PMCID: PMC10205782 DOI: 10.1016/j.jsps.2023.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/30/2023] [Indexed: 05/27/2023] Open
Abstract
Pyran is a heterocyclic group containing oxygen that possesses a variety of pharmacological effects. Pyran is also one of the most prevalent structural subunits in natural products, such as xanthones, coumarins, flavonoids, benzopyrans, etc. Additionally demonstrating the neuroprotective properties of pyrans is the fact that this heterocycle has recently attracted the attention of scientists worldwide. Alzheimer's Disease (AD) treatment and diagnosis are two of the most critical research objectives worldwide. Increased amounts of extracellular senile plaques, intracellular neurofibrillary tangles, and a progressive shutdown of cholinergic basal forebrain neuron transmission are often related with cognitive impairment. This review highlights the various pyran scaffolds of natural and synthetic origin that are effective in the treatment of AD. For better understanding synthetic compounds are categorized as different types of pyran derivatives like chromene, flavone, xanthone, xanthene, etc. The discussion encompasses both the structure-activity correlations of these compounds as well as their activity against AD. Because of the intriguing actions that were uncovered by these pyran-based scaffolds, there is no question that they are at the forefront of the search for potential medication candidates that could treat Alzheimer's disease.
Collapse
|
5
|
Li X, Li T, Zhan F, Cheng F, Lu L, Zhang B, Li J, Hu Z, Zhou S, Jia Y, Allen S, White L, Phillips J, Zhu Z, Xu J, Yao H. Design, Synthesis, and Biological Evaluation of Novel Chromanone Derivatives as Multifunctional Agents for the Treatment of Alzheimer's Disease. ACS Chem Neurosci 2022; 13:3488-3501. [PMID: 36383455 DOI: 10.1021/acschemneuro.2c00520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Based on a multitarget strategy, a series of novel chromanone-1-benzyl-1,2,3,6-tetrahydropyridin hybrids were identified for the potential treatment of Alzheimer's disease (AD). Biological evaluation demonstrated that these hybrids exhibited significant inhibitory activities toward acetylcholinesterase (AChE) and monoamine oxidase B (MAO-B). The optimal compound C10 possessed excellent dual AChE/MAO-B inhibition both in terms of potency and equilibrium (AChE: IC50 = 0.58 ± 0.05 μM; MAO-B: IC50 = 0.41 ± 0.04 μM). Further molecular modeling and kinetic investigations revealed that compound C10 was a dual-binding inhibitor bound to both the catalytic anionic site and peripheral anionic site of AChE. In addition, compound C10 exhibited low neurotoxicity and potently inhibited AChE enzymatic activity. Furthermore, compound C10 more effectively protected against mitochondrial dysfunction and oxidation than donepezil, strongly inhibited AChE-induced amyloid aggregation, and moderately reduced glutaraldehyde-induced phosphorylation of tau protein in SH-SY5Y cells. Moreover, compound C10 displayed largely enhanced improvements in cognitive behaviors and spatial memory in a scopolamine-induced AD mice model with better efficacy than donepezil. Overall, the multifunctional profiles of compound C10 suggest that it deserves further investigation as a promising lead for the prospective treatment of AD.
Collapse
Affiliation(s)
- Xinnan Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Tiantian Li
- School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K
| | - Feiyan Zhan
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Feiyue Cheng
- School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K
| | - Li Lu
- School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K
| | - Bocheng Zhang
- School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K
| | - Junda Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Zhaoxin Hu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Shengnan Zhou
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Yilin Jia
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Stephanie Allen
- School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K
| | - Lisa White
- School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K
| | - James Phillips
- School of Pharmacy, University of College London, London WC1N 1AX, U.K
| | - Zheying Zhu
- School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| |
Collapse
|
6
|
Lipopolysaccharide-Induced Model of Neuroinflammation: Mechanisms of Action, Research Application and Future Directions for Its Use. Molecules 2022; 27:molecules27175481. [PMID: 36080253 PMCID: PMC9457753 DOI: 10.3390/molecules27175481] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
Despite advances in antimicrobial and anti-inflammatory therapies, inflammation and its consequences still remain a significant problem in medicine. Acute inflammatory responses are responsible for directly life-threating conditions such as septic shock; on the other hand, chronic inflammation can cause degeneration of body tissues leading to severe impairment of their function. Neuroinflammation is defined as an inflammatory response in the central nervous system involving microglia, astrocytes, and cytokines including chemokines. It is considered an important cause of neurodegerative diseases, such as Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Lipopolysaccharide (LPS) is a strong immunogenic particle present in the outer membrane of Gram-negative bacteria. It is a major triggering factor for the inflammatory cascade in response to a Gram-negative bacteria infection. The use of LPS as a strong pro-inflammatory agent is a well-known model of inflammation applied in both in vivo and in vitro studies. This review offers a summary of the pathogenesis associated with LPS exposure, especially in the field of neuroinflammation. Moreover, we analyzed different in vivo LPS models utilized in the area of neuroscience. This paper presents recent knowledge and is focused on new insights in the LPS experimental model.
Collapse
|