1
|
Rugină D, Socaciu MA, Nistor M, Diaconeasa Z, Cenariu M, Tabaran FA, Socaciu C. Liposomal and Nanostructured Lipid Nanoformulations of a Pentacyclic Triterpenoid Birch Bark Extract: Structural Characterization and In Vitro Effects on Melanoma B16-F10 and Walker 256 Tumor Cells Apoptosis. Pharmaceuticals (Basel) 2024; 17:1630. [PMID: 39770472 PMCID: PMC11728790 DOI: 10.3390/ph17121630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Pentacyclic triterpenoids are increasingly studied as anticancer agents with many advantages compared to synthetic chemotherapeutics. The aim of this study was to prepare liposomal and nanostructured lipid formulations including a standardized extract of silver birch (Betula pendula) outer bark (TTs) and to evaluate their potential as anticancer agents in vitro, using Melanoma B16-F10 and Walker carcinoma cells. Methods: Appropriate solvents were selected for efficient TTs extraction, and original recipes were used to obtain Pegylated liposomes and nanolipid complexes with entrapped TTs, comparative to pure standards (betulinic acid and doxorubicin) in similar conditions. The composition, morphology, and sizes of all nanoformulations were checked by high-performance liquid chromatography/mass spectrometry, Transmission Electronic Microscopy, and Diffraction Light Scattering. The entrapment efficiency and its impact on cell viability, cell cycle arrest, and apoptosis by flow cytometry was also measured on both cancer cell lines. Conclusions: The standardized TTs, including betulin, lupeol, and betulinic acid, showed good stability and superior activity compared to pure betulinic acid. According to experimental data, TTs showed good entrapment in liposomal and NLC nanoformulations, both delivery systems including natural, biodegradable ingredients and enhanced bioavailability. The apoptosis and necrosis effects were more pronounced for TTs liposomal formulations in both types of cancer cells, with lower cytotoxicity compared to Doxorubicin, and can be correlated with their increased bioavailability.
Collapse
Affiliation(s)
- Dumitriţa Rugină
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (D.R.); (M.C.); (F.A.T.)
| | - Mihai Adrian Socaciu
- Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400347 Cluj-Napoca, Romania;
- Department of Biotechnology, BIODIATECH—Proplanta Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| | - Madalina Nistor
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (Z.D.)
| | - Zorita Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (Z.D.)
| | - Mihai Cenariu
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (D.R.); (M.C.); (F.A.T.)
| | - Flaviu Alexandru Tabaran
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (D.R.); (M.C.); (F.A.T.)
| | - Carmen Socaciu
- Department of Biotechnology, BIODIATECH—Proplanta Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (Z.D.)
| |
Collapse
|
2
|
Guo S, Lv Y, Shen J, Li R, Liu H, Fan Y, Tian C. Network Pharmacology Studies on the Molecular Mechanism of Hashimoto's Thyroiditis Treated with Shutiao Qiji Decoction. Comb Chem High Throughput Screen 2024; 27:2899-2911. [PMID: 37929726 DOI: 10.2174/0113862073259714231012070100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND In recent years, the number of patients with Hashimoto's thyroiditis has been increasing, and traditional Chinese medicine ingredients and combinations have been applied to treat Hashimoto's thyroiditis to increase efficacy and reduce side effects during the treatment process. OBJECTIVE Shutiao Qiji Decoction is one of the Chinese traditional medicine prescriptions, which is commonly used to treat cancer, tumor, etc. It is also used for thyroid-related diseases in the clinic. Hashimoto's thyroiditis is an autoimmune disease. In this study, the mechanism of Shutiao Qiji Decoction in treating Hashimoto's thyroiditis was studied through network pharmacology and molecular docking verification. METHOD Each Chinese medicine ingredient of Shutiao Qiji Decoction was retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. The related genes of HT were searched from the UniProt and GeneCards databases. Meanwhile, we used Cytoscape to construct the protein-protein interaction (PPI) visual network analysis, and used the search tool to search the database of Interacting Genes (STRING) to build a PPI network. These key proteins were enriched and analyzed by molecular docking validation, Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Hashimoto's thyroiditis disease model was established in SD rats, and SQD was administered by gavage after the successful establishment of the model. After 6 weeks of continuous administration of the drug by gavage, tissue samples were collected and the thyroid and spleen tissues were visualized by HE staining to verify the therapeutic effect. RESULTS The results showed that there were 287 TCM active ingredients, 1920 HT-related disease targets, and 176 drug and disease targets in SQD. Through PPI analysis, GP analysis, and KEGG analysis of the common targets of drugs and diseases, we found their pathways of action to be mainly cancer action pathway, PI3K-AKT signaling pathway, and T-cell action pathway. The active ingredients of the drugs in SQD, malvidin, stigmasterol, porin-5-en-3bta-ol, and chrysanthemum stigmasterol, were docked with the related target proteins, MAPK, GSK3β, TSHR, and NOTCH molecules. The best binding energies obtained from docking were mairin with TSHR, stigmasterol with TSHR, poriferast-5-en-3beta-ol with MAPK, and chryseriol with GSK3β, with binding energies of -6.84 kcal/mol, -6.53 kcal/mol, -5.03 kcal/mol, and -5.05 kcal/mol, respectively. HE staining sections of rat thyroid and spleen tissues showed that SQD had a therapeutic effect on Hashimoto's thyroiditis and restored its immune function. CONCLUSION It is verified by molecular docking results that Shutiao Qiji Decoction has a potential therapeutic effect on Hashimoto's thyroiditis in the MAPK/TSHR/NOTCH signal pathway, and that the main components, mairin, stigmasterol, poriferast-5-en-3beta-ol, and chryseriol play a role in it. SQD has been shown to have a good therapeutic effect on Hashimoto's thyroiditis.
Collapse
Affiliation(s)
- Shuang Guo
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Yan Lv
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Junyu Shen
- Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, 210000, China
| | - Rong Li
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Haipeng Liu
- The Second Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650216, China
| | - Yuan Fan
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650500, China
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Yunnan, 650500, China
| | - Chunhong Tian
- Yunnan Research Institute of Traditional Chinese Medicine, Kunming, Yunnan, 650500, China
| |
Collapse
|
3
|
Nistor M, Rugina D, Diaconeasa Z, Socaciu C, Socaciu MA. Pentacyclic Triterpenoid Phytochemicals with Anticancer Activity: Updated Studies on Mechanisms and Targeted Delivery. Int J Mol Sci 2023; 24:12923. [PMID: 37629103 PMCID: PMC10455110 DOI: 10.3390/ijms241612923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Pentacyclic triterpenoids (TTs) represent a unique family of phytochemicals with interesting properties and pharmacological effects, with some representatives, such as betulinic acid (BA) and betulin (B), being mainly investigated as potential anticancer molecules. Considering the recent scientific and preclinical investigations, a review of their anticancer mechanisms, structure-related activity, and efficiency improved by their insertion in nanolipid vehicles for targeted delivery is presented. A systematic literature study about their effects on tumor cells in vitro and in vivo, as free molecules or encapsulated in liposomes or nanolipids, is discussed. A special approach is given to liposome-TTs and nanolipid-TTs complexes to be linked to microbubbles, known as contrast agents in ultrasonography. The production of such supramolecular conjugates to deliver the drugs to target cells via sonoporation represents a new scientific and applicative direction to improve TT efficiency, considering that they have limited availability as lipophilic molecules. Relevant and recent examples of in vitro and in vivo studies, as well as the challenges for the next steps towards the application of these complex delivery systems to tumor cells, are discussed, as are the challenges for the next steps towards the application of targeted delivery to tumor cells, opening new directions for innovative nanotechnological solutions.
Collapse
Affiliation(s)
- Madalina Nistor
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (D.R.); (Z.D.)
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| | - Dumitrita Rugina
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (D.R.); (Z.D.)
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| | - Zorita Diaconeasa
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (D.R.); (Z.D.)
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| | - Carmen Socaciu
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (D.R.); (Z.D.)
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| | - Mihai Adrian Socaciu
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
- Department of Radiology, Imaging & Nuclear Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400347 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Ooi SL, Pak SC. Editorial: A Feasible Approach for Natural Products to Treatment of Diseases. Molecules 2023; 28:molecules28093791. [PMID: 37175201 PMCID: PMC10180473 DOI: 10.3390/molecules28093791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The potential of natural products from both plant and animal sources to treat diseases remains enormous, as our understating forms just the tip of the iceberg [...].
Collapse
Affiliation(s)
- Soo Liang Ooi
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia
| | - Sok Cheon Pak
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia
| |
Collapse
|
5
|
Yagati AK, Chavan SG, Baek C, Lee D, Lee MH, Min J. RGO-PANI composite Au microelectrodes for sensitive ECIS analysis of human gastric (MKN-1) cancer cells. Bioelectrochemistry 2023; 150:108347. [PMID: 36549174 DOI: 10.1016/j.bioelechem.2022.108347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/19/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Microelectrode-based cell chip studies for cellular responses often require improved adhesion and growth conditions for efficient cellular diagnosis and high throughput screening in drug discovery. Cell-chip studies are often performed on gold electrodes due to their biocompatibility, and stability, but the electrode-electrolyte interfacial capacitance is the main drawback to the overall sensitivity of the detection system. Thus, here, we developed reduced graphene oxide-polyaniline-modified gold microelectrodes for real-time impedance-based monitoring of human gastric adenocarcinoma cancer (MKN-1) cells. The impedance characterization on modified electrodes showed 28-fold enhanced conductivity than the bare electrodes, and the spectra were modeled with proper equivalent circuits to extrapolate the values of circuit elements. The impedance of both time-and frequency-dependent measurements of cell-covered modified electrodes with equivalent model circuits was analyzed to achieve cellular behavior, such as adhesion, spreading, proliferation, and influence of anti-cancer agents. The normalized impedance at 41.5 kHz (|Z|norm 41 kHz) was selected to monitor the cell growth analysis, which was found linear with the proliferation of adherent cells along with the influence of the anticancer drug agent on the MKN-1 cells. The synergistic effects and biocompatible nature of PANI-RGO modifications improved the overall sensitivity for the cell-growth studies of MKN-1 cells.
Collapse
Affiliation(s)
- Ajay Kumar Yagati
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Changyoon Baek
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Donghyun Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
6
|
Electric Cell-Substrate Impedance Sensing (ECIS) as a Convenient Tool to Assess the Potential of Low Molecular Fraction Derived from Medicinal Fungus Cerrena unicolor in Action on L929 and CT-26 Cell Lines. Molecules 2022; 27:molecules27196251. [PMID: 36234787 PMCID: PMC9571975 DOI: 10.3390/molecules27196251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
The increase in the incidence of cancer has contributed to the search for new therapeutic methods. In recent years, the use of preparations of natural origin from medical fungi has increased. One such active substance is the extracellular, low molecular active fraction obtained from the medicinal fungus Cerrena unicolor. This study aimed to monitor the pharmacokinetics of different concentrations of substances isolated from the medicinal fungus Cerrena unicolor (ex-LMS) using the ECIS technique. In the study, mouse L929 fibroblasts and colon cancer CT26 cell lines were treated with different concentrations of the active fractions obtained from Cerrena unicolor: C1 = 2.285 (μg/mL); C2 = 22.85 (μg/mL); and C3 = 228.5 (μg/mL). This study demonstrated that the tested preparation from Cerrena unicolor had no considerable effect on the resistance, capacitance, and impedance of L929 fibroblast cells, which was an indicator of no significant effect on its physiological processes. At the same time, those parameters exhibited a decrease in colon cancer cell viability. Following our previous and current studies on Cerrena unicolor, ex-LMS extracts can be safely used in anticancer therapy or chemoprevention with no significant harmful effects on normal cells.
Collapse
|