1
|
Alharthy RD, Khalid S, Fatima S, Ullah S, Khan A, Mali SN, Jawarkar RD, Dhabarde SS, Kashtoh H, Taslimi P, Al-Harrasi A, Shafiq Z, Boshta NM. Synthesis of the chromone-thiosemicarbazone scaffold as promising α-glucosidase inhibitors: An in vitro and in silico approach toward antidiabetic drug design. Arch Pharm (Weinheim) 2024; 357:e2400140. [PMID: 38687119 DOI: 10.1002/ardp.202400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Diabetes is a serious metabolic disorder affecting individuals of all age groups and prevails globally due to the failure of previous treatments. This study aims to address the most prevalent form of type 2 diabetes mellitus (T2DM) by reporting on the design, synthesis, and in vitro as well as in silico evaluation of chromone-based thiosemicarbazones as potential α-glucosidase inhibitors. In vitro experiments showed that the tested compounds were significantly more potent than the standard acarbose, with the lead compound 3n exhibiting an IC50 value of 0.40 ± 0.02 μM, ~2183-fold higher than acarbose having an IC50 of 873.34 ± 1.67 μM. A kinetic mechanism analysis demonstrated that compound 3n exhibited reversible inhibition of α-glucosidase. To gain deeper insights, in silico molecular docking, pharmacokinetics, and molecular dynamics simulations were conducted for the investigation of the interactions, orientation, stability, and conformation of the synthesized compounds within the active pocket of α-glucosidase.
Collapse
Affiliation(s)
- Rima D Alharthy
- Department of Chemistry, Science & Arts College, Rabigh Branch, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Sana Khalid
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Shamool Fatima
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Sultanate of Oman
| | - Suraj N Mali
- Department of Pharmaceutical Science and Technology, Birla Institute of Technology, Mesra, India
| | - Rahul D Jawarkar
- Department of Medicinal Chemistry and Drug Discovery, Dr. Rajendra Gode Institute of Pharmacy, Amravati, India
| | | | - Hamdy Kashtoh
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Sultanate of Oman
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Nader M Boshta
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Koam, Egypt
| |
Collapse
|
2
|
Dziduch K, Janowska S, Andrzejczuk S, Strzyga-Łach P, Struga M, Feldo M, Demchuk O, Wujec M. Synthesis and Biological Evaluation of New Compounds with Nitroimidazole Moiety. Molecules 2024; 29:3023. [PMID: 38998972 PMCID: PMC11243693 DOI: 10.3390/molecules29133023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Heterocyclic compounds, particularly those containing azole rings, have shown extensive biological activity, including anticancer, antibacterial, and antifungal properties. Among these, the imidazole ring stands out due to its diverse therapeutic potential. In the presented study, we designed and synthesized a series of imidazole derivatives to identify compounds with high biological potential. We focused on two groups: thiosemicarbazide derivatives and hydrazone derivatives. We synthesized these compounds using conventional methods and confirmed their structures via nuclear magnetic resonance spectroscopy (NMR), MS, and elemental analysis, and then assessed their antibacterial and antifungal activities in vitro using the broth microdilution method against Gram-positive and Gram-negative bacteria, as well as Candida spp. strains. Our results showed that thiosemicarbazide derivatives exhibited varied activity against Gram-positive bacteria, with MIC values ranging from 31.25 to 1000 µg/mL. The hydrazone derivatives, however, did not display significant antibacterial activity. These findings suggest that structural modifications can significantly influence the antimicrobial efficacy of imidazole derivatives, highlighting the potential of thiosemicarbazide derivatives as promising candidates for further development in antibacterial therapies. Additionally, the cytotoxic activity against four cancer cell lines was evaluated. Two derivatives of hydrazide-hydrazone showed moderate anticancer activity.
Collapse
Affiliation(s)
- Katarzyna Dziduch
- Doctoral School, Medical University of Lublin, Chodzki 7, 20-093 Lublin, Poland
| | - Sara Janowska
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Biomedical Sciences, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | - Sylwia Andrzejczuk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University, 20-093 Lublin, Poland
| | - Paulina Strzyga-Łach
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Poland
| | - Marta Struga
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Poland
| | - Marcin Feldo
- Department of Vascular Surgery, Medical University of Lublin, Staszica 11 St., 20-081 Lublin, Poland
| | - Oleg Demchuk
- Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynow 1J, 20-708 Lublin, Poland
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
3
|
Lasek P, Kosikowska U, Kołodziej P, Kubiak-Tomaszewska G, Krzyżanowska N, Szostek T, Struga M, Feldo M, Bogucka-Kocka A, Wujec M. New Thiosemicarbazide Derivatives with Multidirectional Biological Action. Molecules 2024; 29:1529. [PMID: 38611813 PMCID: PMC11013662 DOI: 10.3390/molecules29071529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Over the years, several new medicinal substances have been introduced for the treatment of diseases caused by bacteria and parasites. Unfortunately, due to the production of numerous defense mechanisms by microorganisms and parasites, they still pose a serious threat to humanity around the world. Therefore, laboratories all over the world are still working on finding new, effective methods of pharmacotherapy. This research work aimed to synthesize new compounds derived from 3-trifluoromethylbenzoic acid hydrazide and to determine their biological activity. The first stage of the research was to obtain seven new compounds, including six linear compounds and one derivative of 1,2,4-triazole. The PASS software was used to estimate the potential probabilities of biological activity of the newly obtained derivatives. Next, studies were carried out to determine the nematocidal potential of the compounds with the use of nematodes of the genus Rhabditis sp. and antibacterial activity using the ACCT standard strains. To determine the lack of cytotoxicity, tests were performed on two cell lines. Additionally, an antioxidant activity test was performed due to the importance of scavenging free radicals in infections with pathogenic microorganisms. The conducted research proved the anthelmintic and antibacterial potential of the newly obtained compounds. The most effective were two compounds with a 3-chlorophenyl substituent, both linear and cyclic derivatives. They demonstrated higher efficacy than the drugs used in treatment.
Collapse
Affiliation(s)
- Patryk Lasek
- Doctoral School, Medical University of Lublin, Chodzki 7, 20-093 Lublin, Poland;
| | - Urszula Kosikowska
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University, 20-093 Lublin, Poland;
| | - Przemysław Kołodziej
- Department of Biology and Genetics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland; (P.K.); (N.K.); (A.B.-K.)
| | - Grażyna Kubiak-Tomaszewska
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Poland; (G.K.-T.); (T.S.); (M.S.)
| | - Natalia Krzyżanowska
- Department of Biology and Genetics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland; (P.K.); (N.K.); (A.B.-K.)
| | - Tomasz Szostek
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Poland; (G.K.-T.); (T.S.); (M.S.)
| | - Marta Struga
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Poland; (G.K.-T.); (T.S.); (M.S.)
| | - Marcin Feldo
- Department of Vascular Surgery, Medical University of Lublin, Staszica 11 St., 20-081 Lublin, Poland;
| | - Anna Bogucka-Kocka
- Department of Biology and Genetics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland; (P.K.); (N.K.); (A.B.-K.)
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Naseem S, Fatima S, Ullah S, Khan A, Mali SN, Jawarkar RD, Syed A, Elgorban AM, Al-Harrasi A, Shafiq Z. Carbonylbis(hydrazine-1-carbothioamide) derivatives as a new class of α-glucosidase inhibitors and their mechanistic insights via molecular docking and dynamic simulations. Arch Pharm (Weinheim) 2024; 357:e2300604. [PMID: 38148299 DOI: 10.1002/ardp.202300604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023]
Abstract
In the past, efforts have been made to find a cure for diabetes, mainly evaluating new classes of compounds to explore their potency. In this study, we present the synthesis and evaluation of carbonylbis(hydrazine-1-carbothioamide) derivatives as potential α-glucosidase inhibitors, employing both in vivo and in silico investigations. The in vitro experiments revealed that all tested compounds were significantly potent for α-glucosidase inhibition, with the lead compound 3a displaying approximately 80 times higher activity than acarbose. To delve deeper, in silico induced fit docking, pharmacokinetics, and molecular dynamics studies were conducted. Significantly, compound 3a exhibited a docking score of -7.87 kcal/mol, surpassing acarbose, which had a docking score of -6.59 kcal/mol. The in silico ADMET indicated that most of the synthesized compounds have properties conducive to drug development. Molecular dynamics analysis demonstrated that, when the ligand 3a was coupled with the target 3TOP, Cα-RMSD backbone RMSD values below 2.4 Å and "Lig_fit_Prot" values below 2.7 Å were observed. QSAR analysis demonstrates that the "fOC8A" descriptor positively correlates with α-glucosidase inhibition activity, while "lipoplus_AbSA" positively contributes and "notringC_notringO_8B" negatively contributes to this activity.
Collapse
Affiliation(s)
- Saira Naseem
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Shamool Fatima
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Suraj N Mali
- Department of Pharmaceutical Science and Technology, Birla Institute of Technology, Mesra, India
| | - Rahul D Jawarkar
- Department of Medicinal Chemistry and Drug Discovery, Dr. Rajendra Gode Institute of Pharmacy, Amravati, India
| | - Asad Syed
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Zahid Shafiq
- Department of Pharmaceutical & Medicinal Chemistry, Bonn, Germany
| |
Collapse
|
5
|
Rashdan HRM, El-Sayyad GS, Shehadi IA, Abdelmonsef AH. Antimicrobial Potency and E. coli β-Carbonic Anhydrase Inhibition Efficacy of Phenazone-Based Molecules. Molecules 2023; 28:7491. [PMID: 38005213 PMCID: PMC10672871 DOI: 10.3390/molecules28227491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
In this investigation, 4-antipyrinecarboxaldhyde was reacted with methyl hydrazinecarbodithioate to afford the carbodithioate derivative 3. The as-prepared carbodithioate derivative 3 is considered to be a key molecule for the preparation of new antipyrine-1,3,4-thiadiazole-based molecules (4-9) through its reaction with the appropriate hydrazonoyl halides. Furthermore, a typical Biginelli three-component cyclocondensation reaction involving ethyl acetoacetate, 4-antipyrinecarboxaldhyde, and thiourea under the standard conditions is carried out in the presence of sulfuric acid to afford the corresponding antipyrine-pyrimidine hybrid molecule (10). The latter was submitted to react with hydrazine monohydrate to provide the corresponding hydrazide derivative (11) which, under reaction with ethyl acetoacetate in refluxing ethanol containing catalytic amount of acetic acid, afforded the corresponding derivative (12). The structure of the newly synthesized compounds was affirmed by their spectral and microanalytical data. We also screened for their antimicrobial potential (ZOI and MIC) and conducted a kinetic study. Additionally, the mechanism of biological action was assessed by a membrane leakage assay and SEM imaging technique. Moreover, the biological activities and the binding modes of these compounds were further supplemented by an in silico docking study against E. coli β-carbonic anhydrase. The amount of cellular protein released by E. coli is directly correlated to the concentration of compound 9, which was found to be 177.99 µg/mL following treatment with 1.0 mg/mL of compound 9. This finding supports compound 9's antibacterial properties and explains how the formation of holes in the E. coli cell membrane results in the release of proteins from the cytoplasm. The newly synthesized compounds represent acceptable antimicrobial activities with potential action against E. coli β-carbonic anhydrase. The docking studies and antimicrobial activity test proved that compound (9) declared a greater activity than the other synthesized compounds.
Collapse
Affiliation(s)
- Huda R M Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza 12622, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza 12566, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez 43511, Egypt
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11765, Egypt
| | - Ihsan A Shehadi
- Chemistry Department, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | | |
Collapse
|
6
|
Synthesis and computational investigation of N,N-dimethyl-4-[(Z)-(phenylimino)methyl] aniline derivatives: Biological and quantitative structural activity relationship studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Structural, Spectral Studies and Antimicrobial Activity of Zinc(II), Cadmium(II) and Nickel(II) Complexes of 2-Acetylbenzothiophene-3-thiosemicarbazone and 2-Acetylbenzothiophene-4-ethyl-3-thiosemicarbazone. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Synthesis, Molecular Docking Study, and Cytotoxicity Evaluation of Some Novel 1,3,4-Thiadiazole as Well as 1,3-Thiazole Derivatives Bearing a Pyridine Moiety. Molecules 2022; 27:molecules27196368. [PMID: 36234908 PMCID: PMC9572991 DOI: 10.3390/molecules27196368] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Pyridine, 1,3,4-thiadiazole, and 1,3-thiazole derivatives have various biological activities, such as antimicrobial, analgesic, anticonvulsant, and antitubercular, as well as other anticipated biological properties, including anticancer activity. The starting 1-(3-cyano-4,6-dimethyl-2-oxopyridin-1(2H)-yl)-3-phenylthiourea (2) was prepared and reacted with various hydrazonoyl halides 3a–h, α-haloketones 5a–d, 3-chloropentane-2,4-dione 7a and ethyl 2-chloro-3-oxobutanoate 7b, which afforded the 3-aryl-5-substituted 1,3,4-thiadiazoles 4a–h, 3-phenyl-4-arylthiazoles 6a–d and the 4-methyl-3- phenyl-5-substituted thiazoles 8a,b, respectively. The structures of the synthesized products were confirmed by spectral data. All of the compounds also showed remarkable anticancer activity against the cell line of human colon carcinoma (HTC-116) as well as hepatocellular carcinoma (HepG-2) compared with the Harmine as a reference under in vitro condition. 1,3,4-Thiadiazole 4h was found to be most promising and an excellent performer against both cancer cell lines (IC50 = 2.03 ± 0.72 and 2.17 ± 0.83 µM, respectively), better than the reference drug (IC50 = 2.40 ± 0.12 and 2.54 ± 0.82 µM, respectively). In order to check the binding modes of the above thiadiazole derivatives, molecular docking studies were performed that established a binding site with EGFR TK.
Collapse
|
9
|
Drug Delivery Systems Based on Pluronic Micelles with Antimicrobial Activity. Polymers (Basel) 2022; 14:polym14153007. [PMID: 35893968 PMCID: PMC9331063 DOI: 10.3390/polym14153007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Bacterial oral diseases are chronic, and, therefore, require appropriate treatment, which involves various forms of administration and dosing of the drug. However, multimicrobial resistance is an increasing issue, which affects the global health system. In the present study, a commercial amphiphilic copolymer, Pluronic F127, was used for the encapsulation of 1-(5′-nitrobenzimidazole-2′-yl-sulphonyl-acetyl)-4-aryl-thiosemicarbazide, which is an original active pharmaceutical ingredient (API) previously synthesized and characterized by our group, at different copolymer/API weight ratios. The obtained micellar systems, with sizes around 20 nm, were stable during 30 days of storage at 4 °C, without a major increase of the Z-average sizes. As expected, the drug encapsulation and loading efficiencies varied with the copolymer/API ratio, the highest values of 84.8 and 11.1%, respectively being determined for the F127/API = 10/1 ratio. Moreover, in vitro biological tests have demonstrated that the obtained polymeric micelles (PMs) are both hemocompatible and cytocompatible. Furthermore, enhanced inhibition zones of 36 and 20 mm were observed for the sample F127/API = 2/1 against S. aureus and E. coli, respectively. Based on these encouraging results, it can be admitted that these micellar systems can be an efficient alternative for the treatment of bacterial oral diseases, being suitable either by injection or by a topical administration.
Collapse
|
10
|
Gumus A, Bozdag M, Akdemir A, Angeli A, Selleri S, Carta F, Supuran CT. Thiosemicarbazide-Substituted Coumarins as Selective Inhibitors of the Tumor Associated Human Carbonic Anhydrases IX and XII. Molecules 2022; 27:molecules27144610. [PMID: 35889480 PMCID: PMC9316761 DOI: 10.3390/molecules27144610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 02/04/2023] Open
Abstract
A novel series of thiosemicarbazide-substituted coumarins was synthesized and the inhibitory effects against four physiologically relevant carbonic anhydrase isoforms I, II, IX and XII showed selective activities on the tumor-associated IX and XII isozymes. Molecular modeling studies on selected compounds 14a and 22a were performed. The binding modes of such compounds were determined assuming their enzymatically active structures (i.e., cinnamic acid) in the thermodynamically favored, and not previously explored, E geometry. Molecular modelling suggests multiple interactions within the enzymatic cavity and may explain the high potency and selectivity reported for the hCAs IX and XII.
Collapse
Affiliation(s)
- Arzu Gumus
- Department of Chemistry, Faculty of Science and Art, Balikesir University, 10145 Balikesir, Turkey
- Correspondence: (A.G.); (F.C.)
| | - Murat Bozdag
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.B.); (A.A.); (S.S.); (C.T.S.)
| | - Atilla Akdemir
- Computer-Aided Drug Discovery Laboratory, Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Turkey;
| | - Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.B.); (A.A.); (S.S.); (C.T.S.)
| | - Silvia Selleri
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.B.); (A.A.); (S.S.); (C.T.S.)
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.B.); (A.A.); (S.S.); (C.T.S.)
- Correspondence: (A.G.); (F.C.)
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.B.); (A.A.); (S.S.); (C.T.S.)
| |
Collapse
|