1
|
Stroyuk O, Raievska O, Hauch J, Brabec CJ. Atomically thin 2D materials for solution-processable emerging photovoltaics. Chem Commun (Camb) 2025; 61:455-475. [PMID: 39641155 DOI: 10.1039/d4cc05133e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Atomically thin 2D materials, such as graphene and graphene oxide, covalent organic frameworks, layered carbides, and metal dichalcogenides, reveal a unique variability of electronic and chemical properties, ensuring their prospects in various energy generation, conversion, and storage applications, including light harvesting in emerging photovoltaic (ePV) devices with organic and perovskite absorbers. Having an extremely high surface area, the 2D materials allow a broad variability of the bandgap and interband transition type, conductivity, charge carrier mobility, and work function through mild chemical modifications, external stimuli, or combination with other 2D species into van-der-Waals heterostructures. This review provides an account of the most prominent "selling points" of atomically thin 2D materials as components of ePV solar cells, including highly tunable charge extraction selectivity and work function, structure-directing and stabilizing effects on halide perovskite light absorbers, as well as broad adaptability of 2D materials to solution-based manufacturing of ePV solar cells using sustainable and upscalable printing technologies. A special focus is placed on the large potential of the materials discovery and design of ePV functionalities based on van-der-Waals stacking of atomically thin 2D building blocks, which can open a vast compositional domain of new materials navigable with machine-learning-based accelerated materials screening.
Collapse
Affiliation(s)
- Oleksandr Stroyuk
- Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN), 91058 Erlangen, Germany.
| | - Oleksandra Raievska
- Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN), 91058 Erlangen, Germany.
| | - Jens Hauch
- Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN), 91058 Erlangen, Germany.
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Materials for Electronics and Energy Technology (i-MEET), Martensstrasse 7, 91058 Erlangen, Germany
| | - Christoph J Brabec
- Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN), 91058 Erlangen, Germany.
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Materials for Electronics and Energy Technology (i-MEET), Martensstrasse 7, 91058 Erlangen, Germany
| |
Collapse
|
2
|
Pagano C, Ceccarini MR, Marinelli A, Imbriano A, Beccari T, Primavilla S, Valiani A, Ricci M, Perioli L. Development and characterization of an emulgel based on a snail slime useful for dermatological applications. Int J Pharm 2024; 660:124337. [PMID: 38885774 DOI: 10.1016/j.ijpharm.2024.124337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Snail slime is an interesting material for effective dermatological use (e.g. wounds). Its properties are stricly connected to the origin. In this paper a snail slime, deriving from the species Helix aspersa Muller and obtained from a company, was deeply characterized and then properly formulated. The slime, obtained by Donatella Veroni method, was firstly submitted to NMR analysis in order to evaluate the chemical composition. The main molecules found are glycolate and allantoin, well known for their activities in wound healing promotion. In vitro experiments performed on keratinocytes, revealed the snail slime ability to promote cellular well-being. Moreover, the microbiological analysis showed high activity against many strains involved in wounds infections such as gram+ (e.g. S. aureus, S. pyogenes), gram- (e.g. P. aeruginosa, E. coli) and the yeast C. albicans. The effect on skin elasticity was evaluated as well by the instrument Cutometer® dualMPA580. The snail slime was then formulated as hydrophilic gel, using a combination of corn starch and sodium hyaluronate as polymers, then used as external water phase of an O/W emulgel. The formulation is physically stable and easily spreadable and demonstrated antimicrobial activity as observed for slime alone, suggesting its suitability to be used for wound treatment.
Collapse
Affiliation(s)
- Cinzia Pagano
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy.
| | - Maria Rachele Ceccarini
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Alessia Marinelli
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Anna Imbriano
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Sara Primavilla
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Salvemini 1, 06126 Perugia, Italy
| | - Andrea Valiani
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Salvemini 1, 06126 Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Luana Perioli
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| |
Collapse
|
3
|
Elebishehy A, Ahmed MM, Aldahmash B, Mohamed MA, Shetaia AA, Khalifa SAM, Eldaim MAA, El-Seedi HR, Yosri N. Cymbopogon schoenanthus (L) extract ameliorates high fat diet-induced obesity and dyslipidemia via reducing expression of lipogenic and thermogenic proteins. Fitoterapia 2024; 175:105897. [PMID: 38479618 DOI: 10.1016/j.fitote.2024.105897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
Globally, obesity has become one of the major health problems. This study was conducted to evaluate the anti-obesity potential of Cymbopogon schoenanthus methanolic extract (CS) in rats. Fifty male Wistar rats of six to eight weeks old, 100-120 g body weight (BW) were randomly assigned into 5 groups (n = 10): The control group was fed a basal diet. CS-group was supplied with basal diet and orally given CS (200 mg/kg BW) for 12 weeks. HFD-group was fed a high-fat diet (HFD) for 18 weeks. HFD + CS-group was fed on HFD and CS HFD then CS-group was fed HFD for 12 weeks then shifted to basal diet and CS for another 6 weeks. Phytochemical analysis of CS indicated the presence of various terpenes and flavonoid compounds. Among the compounds characterized are quercetin, apigenin, luteolin, orientin, eudesmene, cymbopogonol, caffeic acid, coumaric acid, and linolenic acid. Supplementation of HFD significantly increased the body weight, levels of serum triacylglycerol, total cholesterol, very low-density lipoprotein, low-density lipo-protein (HDL), glucose, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. In addition, HFD up-regulated the protein expression of uncoupling protein (UCP)-1 in both brown and white adipose tissue; and the expression of hepatic mRNA of sterol regulatory element-binding protein (SREBP)-1c and SREBP-2. However, it decreased the serum level of HDL, and protein expression level of UCP-1 in both brown and white adipose tissue. Treatment of HFD-fed animals with CS extract either concurrently (HFD + CS-group), or after obesity induction (HFD then CS-group) significantly reversed all HFD-induced alterations in body weight; food intake; serum biochemical profile (including hyperglycemia, dyslipidemia); and tissue gene expressions. These results indicate that CS methanolic extract ameliorated HFD-induced obesity, serum biochemical, hepatic, and adipose tissue gene expression alterations. CS extract accomplished these effects mostly through its various identified bioactive compounds which have been proven to have anti-obesity and anti-diabetic activities.
Collapse
Affiliation(s)
- Asmaa Elebishehy
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt
| | - Mohamed M Ahmed
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Menoufia, Egypt.
| | - Badr Aldahmash
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Aya A Shetaia
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt
| | - Shaden A M Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Psychiatry and Neurology Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden
| | - Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Shebeen Elkom, Menoufia, Egypt
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia.
| | - Nermeen Yosri
- Chemistry Department of Medicinal and Aromatic plants, Research Institute of Medicinal and Aro-matic plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Xiang J, Mlambo R, Dube P, Machona O, Shaw I, Seid Y, He Y, Luo M, Hong T, He B, Zhou W, Tan S. The obesogenic side of Genistein. Front Endocrinol (Lausanne) 2023; 14:1308341. [PMID: 38098865 PMCID: PMC10720314 DOI: 10.3389/fendo.2023.1308341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Genistein (GN) has been highly recommended for its medicinal properties like anticancer, antidiabetic, antihyperlipidemic, antiviral, and antioxidant activities among others. Recently, scientists realized that Genistein is an endocrine disruptor. It is an obesogen that interferes with the endocrine system causing obesity through many mechanisms like inducing adipocyte differentiation, lipid accumulation, and transformation of some stem cells into adipocytes (bone marrow mesenchymal stem cells for example) in vitro. Animal studies show that GN upregulates genes associated with adipogenesis like CCAAT/enhancer binding protein alpha (Cebpα), CCAAT/enhancer binding protein beta (Cebpβ), and PPARγ. In silico studies reveal a strong binding affinity for estrogen receptors. All these findings were contingent on concentration and tissues. It is beyond dispute that obesity is one of the most frustrating medical conditions under the sun. The pathophysiology of this disease was first attributed to a high-calorie diet and lack of physical activity. However, studies proved that these two factors are not enough to account for obesity in both children and adults. This mini review highlights how Genistein interaction with the peroxisome proliferator-activated receptor gamma protein can cause obesity.
Collapse
Affiliation(s)
- Jia Xiang
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Ronald Mlambo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Progress Dube
- Simon Mazorodze School of Medical and Health Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
| | - Oleen Machona
- Simon Mazorodze School of Medical and Health Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
| | - Ibrahim Shaw
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Yimer Seid
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Yongju He
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, China
| | - Min Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Binsheng He
- Academician Workstation, Changsha Medical University, Changsha, China
| | - Wenhu Zhou
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Songwen Tan
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Liegertová M, Malý J. Gastropod Mucus: Interdisciplinary Perspectives on Biological Activities, Applications, and Strategic Priorities. ACS Biomater Sci Eng 2023; 9:5567-5579. [PMID: 37751898 PMCID: PMC10566510 DOI: 10.1021/acsbiomaterials.3c01096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
Terrestrial gastropod mucus exhibits multifunctional attributes, enabling diverse applications. This comprehensive review integrates insights across biomedicine, biotechnology, and intellectual property to elucidate the bioactivities, physicochemical properties, and ecological roles of snail and slug mucus. Following an overview of mucus functional roles in gastropods, promising applications are highlighted in wound healing, antimicrobials, biomaterials, and cosmetics, alongside key challenges. An analysis of global patent trends reveals surging innovation efforts to leverage gastropod mucus. Strategic priorities include bioprospecting natural diversity, optimizing stabilization systems, recombinant biosynthesis, and fostering collaboration to translate promising potentials sustainably into impactful technologies. Ultimately, harnessing the remarkable multifunctionality of gastropod mucus holds immense opportunities for transformative innovations in biomedicine, biotechnology, and beyond.
Collapse
Affiliation(s)
- Michaela Liegertová
- Centre of Nanomaterials and Biotechnology,
Faculty of Science, Jan Evangelista Purkyně
University in Ústí nad Labem, Pasteurova 3632/15, Ústí nad Labem 400 96, Czech Republic
| | - Jan Malý
- Centre of Nanomaterials and Biotechnology,
Faculty of Science, Jan Evangelista Purkyně
University in Ústí nad Labem, Pasteurova 3632/15, Ústí nad Labem 400 96, Czech Republic
| |
Collapse
|
6
|
Fayed MAA, Bakr RO, Yosri N, Khalifa SAM, El-Seedi HR, Hamdan DI, Refaey MS. Chemical profiling and cytotoxic potential of the n-butanol fraction of Tamarix nilotica flowers. BMC Complement Med Ther 2023; 23:169. [PMID: 37226153 DOI: 10.1186/s12906-023-03989-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Cancer represents one of the biggest healthcare issues confronting humans and one of the big challenges for scientists in trials to dig into our nature for new remedies or to develop old ones with fewer side effects. Halophytes are widely distributed worldwide in areas of harsh conditions in dunes, and inland deserts, where, to cope with those conditions they synthesize important secondary metabolites highly valued in the medical field. Several Tamarix species are halophytic including T.nilotica which is native to Egypt, with a long history in its tradition, found in its papyri and in folk medicine to treat various ailments. METHODS LC-LTQ-MS-MS analysis and 1H-NMR were used to identify the main phytoconstituents in the n- butanol fraction of T.nilotica flowers. The extract was tested in vitro for its cytotoxic effect against breast (MCF-7) and liver cell carcinoma (Huh-7) using SRB assay. RESULTS T.nilotica n-butanol fraction of the flowers was found to be rich in phenolic content, where, LC-LTQ-MS-MS allowed the tentative identification of thirty-nine metabolites, based on the exact mass, the observed spectra fragmentation patterns, and the literature data, varying between tannins, phenolic acids, and flavonoids. 1H-NMR confirmed the classes tentatively identified. The in-vitro evaluation of the n-butanol fraction showed lower activity on MCF-7 cell lines with IC50 > 100 µg/mL, while the higher promising effect was against Huh-7 cell lines with an IC50= 37 µg/mL. CONCLUSION Our study suggested that T.nilotica flowers' n-butanol fraction is representing a promising cytotoxic candidate against liver cell carcinoma having potential phytoconstituents with variable targets and signaling pathways.
Collapse
Affiliation(s)
- Marwa A A Fayed
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
| | - Riham O Bakr
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Nermeen Yosri
- Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Shaden A M Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91, Stockholm, Sweden
| | - Hesham R El-Seedi
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Nanjing, 210024, China
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, P.O. Box 591, 751 24, Uppsala, SE, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koom, 32512, Egypt
| | - Dalia I Hamdan
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Shebin El-Koom, 32511, Egypt
| | - Mohamed S Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| |
Collapse
|
7
|
Woźniak M. Antifungal Agents in Wood Protection—A Review. Molecules 2022; 27:molecules27196392. [PMID: 36234929 PMCID: PMC9570806 DOI: 10.3390/molecules27196392] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/10/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
The biodegradation of wood and wood products caused by fungi is recognized as one of the most significant problems worldwide. To extend the service life of wood products, wood is treated with preservatives, often with inorganic compounds or synthetic pesticides that have a negative impact on the environment. Therefore, the development of new, environmentally friendly wood preservatives is being carried out in research centers around the world. The search for natural, plant, or animal derivatives as well as obtaining synthetic compounds that will be safe for humans and do not pollute the environment, while at the same time present biological activity is crucial in terms of environmental protection. The review paper presents information in the literature on the substances and chemical compounds of natural origin (plant and animal derivatives) and synthetic compounds with a low environmental impact, showing antifungal properties, used in research on the ecological protection of wood. The review includes literature reports on the potential application of various antifungal agents including plant extracts, alkaloids, essential oils and their components, propolis extract, chitosan, ionic liquids, silicon compounds, and nanoparticles as well as their combinations.
Collapse
Affiliation(s)
- Magdalena Woźniak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| |
Collapse
|