1
|
Cordeiro Gomes F, Ferreira Alves MC, Alves Júnior S, Medina SH. Bactericidal Metal-Organic Gallium Frameworks - Synthesis to Application. Mol Pharm 2025; 22:638-646. [PMID: 39729416 PMCID: PMC11795525 DOI: 10.1021/acs.molpharmaceut.4c01253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 12/29/2024]
Abstract
Gallium, a trace metal not found in its elemental form in nature, has garnered significant interest as a biocide, given its ability to interfere with iron metabolism in bacteria. Consequently, several gallium compounds have been developed and studied for their antimicrobial properties but face challenges of poor solubility and formulation for delivery. Organizing the metal into three-dimensional, hybrid scaffolds, termed metal-organic frameworks (MOFs), is an emerging platform with potential to address many of these limitations. Gallium MOFs show improved solubility and antibacterial potency relative to the free metal due to their ability to coload antibiotics and functional biomolecules. Synthetic strategies are equally versatile, with several rapid, cost-effective, and scalable methods available. In this review, we present the advantages and disadvantages of these various synthetic strategies with respect to their antibacterial efficiency, product purity, and reaction control. The activity of gallium-based MOFs against Gram-positive and Gram-negative pathogens in mono- and combinatorial therapeutic settings is discussed in the context of their mechanisms of action and structure-function-performance relationships collated from recent studies. While gallium MOF development as antibacterials is still in its nascent stages, the examples discussed here highlight their potential as a novel class of therapeutics poised to impact the fight against pan-drug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Fellype
Diorgennes Cordeiro Gomes
- Department
of Fundamental Chemistry, Federal University
of Pernambuco, Cidade Universitária, Recife 50670, Brazil
- Department
of Biomedical Engineering, Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | | | - Severino Alves Júnior
- Department
of Fundamental Chemistry, Federal University
of Pernambuco, Cidade Universitária, Recife 50670, Brazil
| | - Scott H. Medina
- Department
of Biomedical Engineering, Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
- Huck
Institutes of the Life Sciences, Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
2
|
Ramu S, Kainthla I, Chandrappa L, Shivanna JM, Kumaran B, Balakrishna RG. Recent advances in metal organic frameworks-based magnetic nanomaterials for waste water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:167-190. [PMID: 38044404 DOI: 10.1007/s11356-023-31162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023]
Abstract
Magnetic nanoparticle-incorporated metal organic frameworks (MOF) are potential composites for various applications such as catalysis, water treatment, drug delivery, gas storage, chemical sensing, and heavy metal ion removal. MOFs exhibits high porosity and flexibility enabling guest species like heavy metal ions to diffuse into bulk structure. Additionally, shape and size of the pores contribute to selectivity of the guest materials. Incorporation of magnetic materials allows easy collection of adsorbent materials from solution system making the process simple and cost-effective. In view of the above advantages in the present review article, we are discussing recent advances of different magnetic material-incorporated MOF (Mg-MOF) composite for application in photocatalytic degradation of dyes and toxic chemicals, adsorption of organic compounds, adsorption of heavy metal ions, and adsorption of dyes. The review initially discusses on properties of Mg-MOF, different synthesis techniques such as mechanochemical, sonochemical (ultrasound) synthesis, slow evaporation and diffusion methods, solvo(hydro)-thermal and iono-thermal method, microwave-assisted method, microemulsion method post-synthetic modification template strategies and followed by application in waste water treatment.
Collapse
Affiliation(s)
- Shwetharani Ramu
- Centre for Nano and Material Sciences, Jain (Deemed-to-Be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Itika Kainthla
- School of Physics and Material Sciences, Shoolini University, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - Lavanya Chandrappa
- Centre for Nano and Material Sciences, Jain (Deemed-to-Be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Jyothi Mannekote Shivanna
- Department of Chemistry, AMC Engineering College, Bannerughatta Road, Bengaluru, Karnataka, 560083, India
| | - Brijesh Kumaran
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh, 208016, India
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain (Deemed-to-Be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India.
| |
Collapse
|
3
|
Liu S, Ji Y, Zhu H, Shi Z, Li M, Yu Q. Gallium-based metal-organic frameworks loaded with antimicrobial peptides for synergistic killing of drug-resistant bacteria. J Mater Chem B 2023; 11:10446-10454. [PMID: 37888956 DOI: 10.1039/d3tb01754k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Increased antibiotic resistance has made bacterial infections a global concern, which requires novel non-antibiotic-dependent antibacterial strategies to address the menace. Antimicrobial peptides (AMPs) are a promising antibiotic alternative, whose antibacterial mechanism is mainly to destroy the membrane of bacteria. Gallium ions exhibit an antibacterial effect by interfering with the iron metabolism of bacteria. With the rapid development of nanotechnology, it is worth studying the potential of gallium-AMP-based nanocomposites for treating bacterial infections. Herein, novel gallium-based metal-organic frameworks (MOFs) were synthesized at room temperature, followed by in situ loading of the model AMP melittin. The obtained nanocomposites exhibited stronger antibacterial activity than pure MEL and gallium ions, achieving the effects of "one plus one is greater than two". Moreover, the nanocomposites showed favorable biocompatibility and accelerated healing of a wound infected by methicillin-resistant Staphylococcus aureus by down-regulation of inflammatory cytokines IL-6 and TNF-α. This work presents an innovative antibacterial strategy to overcome the antibiotic resistance crisis and expand the application of AMPs.
Collapse
Affiliation(s)
- Shuo Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
- Research Center for Infectious Diseases, Nankai University, Tianjin 300350, China.
| | - Yuxin Ji
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hangqi Zhu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhishang Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingchun Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qilin Yu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
- Research Center for Infectious Diseases, Nankai University, Tianjin 300350, China.
| |
Collapse
|
4
|
Dutta M, Bora J, Chetia B. Overview on recent advances of magnetic metal-organic framework (MMOF) composites in removal of heavy metals from aqueous system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13867-13908. [PMID: 36547836 DOI: 10.1007/s11356-022-24692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Developing a novel, simple, and cost-effective analytical technique with high enrichment capacity and selectivity is crucial for environmental monitoring and remediation. Metal-organic frameworks (MOFs) are porous coordination polymers that are self-assembly synthesized from organic linkers and inorganic metal ions/metal clusters. Magnetic metal-organic framework (MMOF) composites are promising candidate among the new-generation sorbent materials available for magnetic solid-phase extraction (MSPE) of environmental contaminants due to their superparamagnetism properties, high crystallinity, permanent porosity, ultrahigh specific surface area, adaptable pore shape/sizes, tunable functionality, designable framework topology, rapid and ultrahigh adsorption capacity, and reusability. In this review, we focus on recent scientific progress in the removal of heavy metal ions present in contaminated aquatic system by using MMOF composites. Different types of MMOFs, their synthetic approaches, and various properties that are harnessed for removal of heavy metal ions from contaminated water are discussed briefly. Adsorption mechanisms involved, adsorption capacity, and regeneration of the MMOF sorbents as well as recovery of heavy metal ions adsorbed that are reported in the last ten years have been discussed in this review. Moreover, particular prospects, challenges, and opportunities in future development of MMOFs towards their greener synthetic approaches for their practical industrial applications have critically been considered in this review.
Collapse
Affiliation(s)
- Mayuri Dutta
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Jyotismita Bora
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Bolin Chetia
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, 786004, India.
| |
Collapse
|
5
|
Cimbru AM, Rikabi AAKK, Oprea O, Grosu AR, Tanczos SK, Simonescu MC, Pașcu D, Grosu VA, Dumitru F, Nechifor G. pH and pCl Operational Parameters in Some Metallic Ions Separation with Composite Chitosan/Sulfonated Polyether Ether Ketone/Polypropylene Hollow Fibers Membranes. MEMBRANES 2022; 12:833. [PMID: 36135852 PMCID: PMC9502727 DOI: 10.3390/membranes12090833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
The development of new composite membranes is required to separate chemical species from aggressive environments without using corrective reagents. One such case is represented by the high hydrochloric acid mixture (very low pH and pCl) that contains mixed metal ions, or that of copper, cadmium, zinc and lead ions in a binary mixture (Cu-Zn and Cd-Pb) or quaternary mixture. This paper presents the obtaining of a composite membrane chitosan (Chi)-sulfonated poly (ether ether ketone) (sPEEK)-polypropylene hollow fiber (Chi/sPEEK/PPHF) and its use in the separation of binary or quaternary mixtures of copper, cadmium, zinc, and lead ions by nanofiltration and pertraction. The obtained membranes were morphologically and structurally characterized using scanning electron microscopy (SEM), high resolution SEM (HR-SEM), energy dispersive spectroscopy analysis (EDAX), Fourier Transform InfraRed (FTIR) spectroscopy, thermogravimetric analysis, and differential scanning calorimetry (TGA-DSC), but also used in preliminary separation tests. Using the ion solutions in hydrochloric acid 3 mol/L, the separation of copper and zinc or cadmium and lead ions from binary mixtures was performed. The pertraction results were superior to those obtained by nanofiltration, both in terms of extraction efficiency and because at pertraction, the separate cation was simultaneously concentrated by an order of magnitude. The mixture of the four cations was separated by nanofiltration (at 5 bars, using a membrane of a 1 m2 active area) by varying two operational parameters: pH and pCl. Cation retention could reach 95% when adequate values of operational parameters were selected. The paper makes some recommendations for the use of composite membranes, chitosan (Chi)-sulfonated poly (ether ether ketone) (sPEEK)-polypropylene hollow fiber (Chi/sPEEK/PPHF), so as to obtain the maximum possible retention of the target cation.
Collapse
Affiliation(s)
- Anca Maria Cimbru
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Abbas Abdul Kadhim Klaif Rikabi
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Technical College of Al-Mussaib (TCM), Al-Furat Al-Awsat University, Babylon-Najaf Street, Najaf 54003, Iraq
| | - Ovidiu Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Alexandra Raluca Grosu
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Szidonia-Katalin Tanczos
- Department of Bioengineering, University Sapientia of Miercurea-Ciuc, 500104 Miercurea-Ciuc, Romania
| | - Maria Claudia Simonescu
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Dumitru Pașcu
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Vlad-Alexandru Grosu
- Department of Electronic Technology and Reliability, Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest, 061071 Bucharest, Romania
| | - Florina Dumitru
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Gheorghe Nechifor
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| |
Collapse
|