1
|
Arteaga-Castrejón AA, Agarwal V, Khandual S. Microalgae as a potential natural source for the green synthesis of nanoparticles. Chem Commun (Camb) 2024; 60:3874-3890. [PMID: 38529840 DOI: 10.1039/d3cc05767d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The increasing global population is driving the development of alternative sources of food and energy, as well as better or new alternatives for health and environmental care, which represent key challenges in the field of biotechnology. Microalgae represent a very important source material to produce several high-value-added bioproducts. Due to the rapid changes in the modern world, there is a need to build new materials for use, including those in the nanometer size, although these developments may be chronological but often do not occur at a time. In the last few years, a new frontier has opened up at the interface of biotechnology and nanotechnology. This new frontier could help microalgae-based nanomaterials to possess new functions and abilities. Processes for the green synthesis of nanomaterials are being investigated, and the availability of biological resources such as microalgae is continuously being examined. The present review provides a concise overview of the recent advances in the synthesis, characterization, and applications of nanoparticles formed using a wide range of microalgae-based biosynthesis processes. Highlighting their innovative and sustainable potential in current research, our study contributes towards the in-depth understanding and provides latest updates on the alternatives offered by microalgae in the synthesis of nanomaterials.
Collapse
Affiliation(s)
- Ariana A Arteaga-Castrejón
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Unidad de Biotecnología Industrial, Camino al Arenero #1227, Col. El Bajío Arenal, 45019 Zapopan, Jalisco, Mexico.
| | - Vivechana Agarwal
- Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, 62209, Mexico.
| | - Sanghamitra Khandual
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Unidad de Biotecnología Industrial, Camino al Arenero #1227, Col. El Bajío Arenal, 45019 Zapopan, Jalisco, Mexico.
| |
Collapse
|
2
|
Bawazeer S. Green synthesis of silver nanoparticles from Euphorbia milii plant extract for enhanced antibacterial and enzyme inhibition effects. Int J Health Sci (Qassim) 2024; 18:25-32. [PMID: 38455597 PMCID: PMC10915915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Objectives Silver nanoparticles (AgNPs) are gaining increasing attention in biomedical applications due to their unique properties. Green synthesis methods are environmentally friendly and have demonstrated potential for AgNP production. This study explores the green synthesis of AgNPs using the methanolic extract of Euphorbia milii, a plant known for its medicinal properties. The primary objectives of this research were to synthesize AgNPs using E. milii extract, characterize the nanoparticles (NPs) using various techniques, and evaluate their antibacterial and enzyme inhibitory activities. Methods E. milii plant extract was utilized for the green synthesis of AgNPs. The characterization of the NPs was performed through ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy (EDX). Antibacterial activity was assessed against Staphylococcus aureus, while enzyme inhibitory assays were conducted against urease, α-glucosidase, carbonic anhydrase II, and xanthine oxidase. Results The synthesized AgNPs exhibited significant antibacterial effects, with a remarkable 20-mm zone of inhibition against S. aureus, surpassing the efficacy of the plant extract alone. Furthermore, the AgNPs demonstrated remarkable enzyme inhibition, achieving impressive percentages of 77.98% against α-glucosidase and 88.54% against carbonic anhydrase II. Half-maximal inhibitory concentration values for enzyme inhibition were highly promising, including 78.09 ± 1.98 μM for α-glucosidase, 0.22 ± 0.10 μM for carbonic anhydrase II, and 7.11 ± 0.55 μM for xanthine oxidase. Conclusion In this study, AgNPs were successfully synthesized using E. milii extract and characterized using various techniques. The AgNPs exhibited significant antibacterial and enzyme-inhibitory activities, showcasing their potential for biomedical applications.
Collapse
Affiliation(s)
- Saud Bawazeer
- Department of Pharmaceutical Science, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
3
|
Ullah R, Jan SA, Khan MN, Nazish M, Kamal A, Kaplan A, Yehia HM, Alarjani KM, Alkasir R, Zaman W. Euphorbia royleana Boiss Derived Silver Nanoparticles and Their Applications as a Nanotherapeutic Agent to Control Microbial and Oxidative Stress-Originated Diseases. Pharmaceuticals (Basel) 2023; 16:1413. [PMID: 37895884 PMCID: PMC10609787 DOI: 10.3390/ph16101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Nanotechnology is one of the most advance and multidisciplinary fields. Recent advances in nanoscience and nanotechnology radically changed the way we diagnose, treat, and prevent various diseases in all aspects of human life. The use of plants and their extracts is one of the most valuable methods towards rapid and single-step protocol preparation for various nanoparticles, keeping intact "the green principles" over the conventional ones and proving their dominance for medicinal importance. A facile and eco-friendly technique for synthesizing silver nanoparticles has been developed by using the latex of Euphorbia royleana as a bio-reductant for reducing Ag+ ions in an aqueous solution. Various characterization techniques were employed to validate the morphology, structure, and size of nanoparticles via UV-Vis spectroscopy, XRD, SEM, and EDS. FTIR spectroscopy validates different functional groups associated with biomolecules stabilizing/capping the silver nanoparticles, while SEM and XRD revealed spherical nanocrystals with FCC geometry. The results revealed that latex extract-mediated silver nanoparticles (LER-AgNPs) exhibited promising antibacterial activity against both gram-positive and -negative bacterial strains (Bacillus pumilus, Staphylococcus aureus, E. coli, Pseudomonas aeruginosa, and Streptococcus viridians). Both latex of E. royleana and LER-AgNPs were found to be potent in scavenging DPPH free radicals with respective EC50s and EC70s as 0.267% and 0.518% and 0.287% and 0.686%. ROSs produced in the body damage tissue and cause inflammation in oxidative stress-originated diseases. H2O2 and OH* scavenging activity increased with increasing concentrations (20-100 μg/mL) of LER-AgNPs. Significant reestablishment of ALT, AST, ALP, and bilirubin serum levels was observed in mice intoxicated with acetaminophen (PCM), revealing promising hepatoprotective efficacy of LER-AgNPs in a dose-dependent manner.
Collapse
Affiliation(s)
- Rehman Ullah
- Pharmacognosy Laboratory, Department of Botany, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan;
| | - Saiqa Afriq Jan
- Pharmacognosy Laboratory, Department of Botany, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan;
| | - Muhammad Nauman Khan
- Department of Botany, Islamia College Peshawar, Peshawar 25120, Pakistan
- University Public School, University of Peshawar, Peshawar 25120, Pakistan
| | - Moona Nazish
- Department of Botany, Rawalpindi Women University, Rawalpindi 46300, Pakistan;
| | - Asif Kamal
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Alevcan Kaplan
- Department of Crop and Animal Production, Sason Vocational School, Batman University, Batman 72060, Turkey;
| | - Hany M. Yehia
- Food Science and Nutrition Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2451, Riyadh 11451, Saudi Arabia;
| | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Rashad Alkasir
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
4
|
Ahmad N, Ali S, Abbas M, Fazal H, Saqib S, Ali A, Ullah Z, Zaman S, Sawati L, Zada A, Sohail. Antimicrobial efficacy of Mentha piperata-derived biogenic zinc oxide nanoparticles against UTI-resistant pathogens. Sci Rep 2023; 13:14972. [PMID: 37696980 PMCID: PMC10495404 DOI: 10.1038/s41598-023-41502-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023] Open
Abstract
Misuse of antibiotics leads to the worldwide spread of antibiotic resistance, which motivates scientists to create new antibiotics. The recurring UTI due to antibiotics-resistant microorganism's challenges scientists globally. The biogenic nanoparticles have the potential to meet the escalating requirements of novel antimicrobial agents. The green synthesis of nanoparticles (NPs) gained more attention due to their reliable applications against resistant microbes. The current study evaluates the biogenic ZnO NPs of Mentha piperata extract against resistant pathogens of urinary tract infections by agar well diffusion assay. The biogenic ZnO NPs revealed comparatively maximum inhibition in comparison to synthetic antibiotics against two bacterial strains (Proteus mirabilis, Pseudomonas aeruginosa) and a fungal strain (Candida albicans).The synthesized biogenic ZnO NPs alone revealed maximum activities than the combination of plant extract (PE) and ZnO NPs, and PE alone. The physiochemical features of ZnO NPs characterized through UV-Vis spectroscopy, FTIR, XRD, SEM, and EDX. The UV-Vis spectroscopy revealed 281.85 nm wavelengths; the XRD pattern revealed the crystalline structure of ZnO NPs. The FTIR analysis revealed the presence of carboxylic and nitro groups, which could be attributed to plant extract. SEM analysis revealed spherical hollow symmetry due to electrostatic forces. The analysis via EDX confirmed the presence of Zn and oxygen in the sample. The physiochemical features of synthesized ZnO NPs provide pivotal information such as quality and effectiveness. The current study revealed excellent dose-dependent antimicrobial activity against the pathogenic isolates from UTI-resistant patients. The higher concentration of ZnONPs interacts with the cell membrane which triggers oxidative burst. They may bind with the enzymes and proteins and brings epigenetic alteration which leads to membrane disruption or cell death.
Collapse
Affiliation(s)
- Nisar Ahmad
- Center for Biotechnology and Microbiology, University of Swat, Swat, 19200, Pakistan
| | - Shujat Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, 19200, Pakistan
| | - Muhammad Abbas
- Center for Biotechnology and Microbiology, University of Swat, Swat, 19200, Pakistan
| | - Hina Fazal
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Peshawar, 25120, Pakistan
| | - Saddam Saqib
- State Key Laboratory of Systematic and Evolutionary Biology, Chinese Academy of Sciences, Beijing, China
| | - Ahmad Ali
- Centre of Plant Science and Biodiversity, University of Swat, Charbagh, Swat, 19200, Pakistan
| | - Zahid Ullah
- Centre of Plant Science and Biodiversity, University of Swat, Charbagh, Swat, 19200, Pakistan
| | - Shah Zaman
- Department of Botany, University of Malakand, Chakdara, 18800, KPK, Pakistan.
| | - Laraib Sawati
- Department of Chemical and Life Sciences, Qurtuba University of Science and Information Technology, Peshawar, 25124, Pakistan
| | - Ahmad Zada
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Sohail
- Institute of Biology/Plant Physiology, Humboldt-University Zü Berlin, 10115, Berlin, Germany.
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Bao Y, Li H, He J, Song K, Yu H, Tian C, Guo J, Zhou X, Liu S. Polyethylene glycol modified graphene oxide-silver nanoparticles nanocomposite as a novel antibacterial material with high stability and activity. Colloids Surf B Biointerfaces 2023; 229:113435. [PMID: 37437413 DOI: 10.1016/j.colsurfb.2023.113435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
Inorganic antibacterial nanomaterials play an increasingly important role in addressing the growing threat of drug-resistant bacteria. Graphene oxide-silver nanoparticles composite (GO-AgNPs), as a kind of inorganic nanomaterials, have excellent antibacterial properties, showing promising potential in biomedical field. However, GO-AgNPs are terribly prone to sedimentation due to aggregation in physiological solutions, along with its non-environmental issues during the synthesis process, seriously limits the antibacterial application of GO-AgNPs in the biomedical field. To solve this problem, herein, polyethylene glycol-graphene oxide-silver nanoparticles composite (GO-AgNPs-PEG) were prepared by modifying GO-AgNPs with polyethylene glycol to enhance their dispersion stability in physiological solutions. In addition, GO-AgNPs-PEG were prepared with using the natural product gallic acid as a reductant and stabilizer, exhibiting the characteristic of environmentally friendly. Meanwhile, the dispersion stability and antibacterial activity of GO-AgNPs-PEG were characterized by various technical methods, it was found that GO-AgNPs-PEG can be stably dispersed in a variety of physiological solutions (e.g., physiological saline, phosphate buffer solution, Luria-Bertani medium, Murashige and Skoog medium) for more than one week. Moreover, the antibacterial properties of GO-AgNPs-PEG in physiological solutions were significantly better than those of GO-AgNPs. Furthermore, it was discovered that the antibacterial mechanism of GO-AgNPs-PEG was probably associated to destroying the integrity of bacterial cell walls and membranes. The findings in this work can provide new ideas and references for the development of new inorganic antibacterial nanomaterials with stable dispersion in physiological solutions.
Collapse
Affiliation(s)
- Yunhui Bao
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China
| | - Huanhuan Li
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China; College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Jian He
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China; College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Ke Song
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China; College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Huazhong Yu
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China; College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Chunlian Tian
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China
| | - Jie Guo
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China; College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Xianwu Zhou
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China; College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Shima Liu
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China; College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China.
| |
Collapse
|
6
|
Dilbar S, Sher H, Ali H, Ullah R, Ali A, Ullah Z. Antibacterial Efficacy of Green Synthesized Silver Nanoparticles Using Salvia nubicola Extract against Ralstonia solanacearum, the Causal Agent of Vascular Wilt of Tomato. ACS OMEGA 2023; 8:31155-31167. [PMID: 37663485 PMCID: PMC10468922 DOI: 10.1021/acsomega.3c03164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023]
Abstract
Ralstonia solanacearum is a phytopathogen causing bacterial wilt diseases of tomato and affecting its productivity, which leads to prominent economic losses annually. As an alternative to conventional pesticides, green synthesized nanoparticles are believed to possess strong antibacterial activities besides being cheap and ecofriendly. Here, we present the synthesis of silver nanoparticles (Sn-AgNPs) from medicinally important aqueous plant extracts of Salvia nubicola. Characterization of biologically synthesized nanoparticles was performed through UV-vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), and thermogravimetric analysis. The antibacterial activity of the biosynthesized silver nanoparticles was tested against the phytopathogen R. solanacearum through in vitro experiments. Preliminary phytochemical analysis of the plant extracts revealed the presence of substantial amounts of flavonoids (57.08 mg GAE/g), phenolics (42.30 mg GAE/g), tannins, and terpenoids. The HPLC phenolic profile indicated the presence of 25 possible bioactive compounds. Results regarding green synthesized silver nanoparticles revealed the conformation of different functional groups through FTIR analysis, which could be responsible for the bioreduction and capping of Ag ions into silver NPs. TEM results revealed the spherical, crystalline shape of nanoparticles with the size in the range of 23-63 nm, which validates SEM results. Different concentrations of Sn-AgNPs (T1 (500 μg/mL) to T7 (78.1 μg/mL)) with a combination of plant extracts (PE-Sn-AgNPs) and plant extracts alone exhibited an efficient inhibition of R. solanacearum. These findings could be used as an effective alternative preparation against the bacterial wilt of tomato.
Collapse
Affiliation(s)
- Shazia Dilbar
- Centre
for Plant Sciences and Biodiversity, University
of Swat, Charbagh Swat 19120, Pakistan
| | - Hassan Sher
- Centre
for Plant Sciences and Biodiversity, University
of Swat, Charbagh Swat 19120, Pakistan
| | - Hina Ali
- Shanghai
Key Laboratory for Molecular Engineering of Chiral Drugs, School of
Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Riaz Ullah
- Department
of Pharmacognosy, College of Pharmacy King
Saud University Riyadh, Riyadh 11451, Saudi Arabia
| | - Ahmad Ali
- Centre
for Plant Sciences and Biodiversity, University
of Swat, Charbagh Swat 19120, Pakistan
| | - Zahid Ullah
- Centre
for Plant Sciences and Biodiversity, University
of Swat, Charbagh Swat 19120, Pakistan
| |
Collapse
|
7
|
Dilbar S, Sher H, Binjawhar DN, Ali A, Ali I. A Novel Based Synthesis of Silver/Silver Chloride Nanoparticles from Stachys emodi Efficiently Controls Erwinia carotovora, the Causal Agent of Blackleg and Soft Rot of Potato. Molecules 2023; 28:molecules28062500. [PMID: 36985472 PMCID: PMC10058436 DOI: 10.3390/molecules28062500] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, the biological synthesis of silver nanoparticles has captured researchers’ attention due to their unique chemical, physical and biological properties. In this study, we report an efficient, nonhazardous, and eco-friendly method for the production of antibacterial silver/silver chloride nanoparticles utilizing the leaf extract of Stachys emodi. The synthesis of se-Ag/AgClNPs was confirmed using UV-visible spectroscopy, DPPH free radical scavenging activity, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). An intense peak absorbance was observed at 437 nm from the UV-visible analysis. The Stachys emodi extract showed the highest DPPH scavenging activity (89.4%). FTIR analysis detected various bands that indicated the presence of important functional groups. The SEM morphological study revealed spherical-shaped nanoparticles having a size ranging from 20 to 70 nm. The XRD pattern showed the formation of a spherical crystal of NPs. The antibacterial activity performed against Erwinia carotovora showed the maximum inhibition by centrifuged silver nanoparticles alone (se-Ag/AgClNPs) and in combination with leaf extract (se-Ag/AgClNPs + LE) and leaf extract (LE) of 98%, 93%, and 62% respectively. These findings suggested that biosynthesized NPs can be used to control plant pathogens effectively.
Collapse
Affiliation(s)
- Shazia Dilbar
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh 19120, Pakistan
| | - Hassan Sher
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh 19120, Pakistan
| | - Dalal Nasser Binjawhar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
- Correspondence:
| | - Ahmad Ali
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh 19120, Pakistan
| | - Iftikhar Ali
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh 19120, Pakistan
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
8
|
Optimization, Characterization, and Anticancer Potential of Silver Nanoparticles Biosynthesized Using Olea europaea. Int J Biomater 2022; 2022:6859637. [PMID: 36199851 PMCID: PMC9529486 DOI: 10.1155/2022/6859637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
Green synthesis has attracted significant attention as an eco-friendly, low-cost, energy-efficient, and non-toxic method for preparing silver nanoparticles (AgNPs) for cancer therapy. This study optimized the green synthesis of AgNPs using Olea europaea extracts and evaluated their anticancer potential. The biosynthesized AgNPs were characterized using various methods, showing stable AgNPs with a desirable morphology and high yield, improving the properties of AgNPs for various medicinal applications. The biosynthesized AgNPs were predominantly spherical, with small sizes ranging from 13 to 21 nm and highly stable at −23 and −24 mV. The findings of this study suggest that green-synthesized AgNPs using Olea europaea and sunlight possess significant anticancer activity against cancer cells in vitro. Further investigation of green synthesis would help to form high-quality AgNPs that have promising potential in treating disease and fighting undesirable pathogens.
Collapse
|
9
|
Habeeb SA, Hammadi AH, Abed D, Al-Jibouri LF. Green synthesis of metronidazole or clindamycin-loaded hexagonal zinc oxide nanoparticles from Ziziphus extracts and its antibacterial activity. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e91057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Green chemistry has become a fruitful approach for the synthesis of semiconductors and nanoparticles with various applications. Herein, we synthesized ZnO hexagonal nanoparticles (HNPs) by green precipitation method using fresh local Ziziphus leaf extract (Rhamnaceae) with a heating range of 60–80 in an alkaline medium. It was calcinated on a furnace at 500 °C for 2 h. to get a very fine and homogeneous pale-yellow powder which is then loaded with either metronidazole or clindamycin. The physical characterizations of the particles’ morphology, size, and purity were measured using the Scanning electron microscope, UV-spectroscopy, and the Fourier transform infrared spectroscope. The size of ZnO nanoparticles (44.63 nm) was measured using scanning electron microscopy (SEM), and the mean crystal size of the precursor (17.37 nm) was measured using X-ray diffraction methods (XRD). The antibacterial activity of these particles was measured against Staphylococcus aureus bacterial strains and analyzed using a “well-diffusion technique” which revealed that metronidazole or clindamycin-containing ZnO nanoparticles showed good bactericidal activity.
Keywords
Collapse
|
10
|
Ahmad M, Ali A, Ullah Z, Sher H, Dai DQ, Ali M, Iqbal J, Zahoor M, Ali I. Biosynthesized silver nanoparticles using Polygonatum geminiflorum efficiently control fusarium wilt disease of tomato. Front Bioeng Biotechnol 2022; 10:988607. [PMID: 36159677 PMCID: PMC9493356 DOI: 10.3389/fbioe.2022.988607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Nanomaterials are gaining tremendous potential as emerging antimicrobials in the quest to find resistance-free alternatives of chemical pesticides. In this study, stable silver nanoparticles were synthesized using the aqueous extract of medicinal plant species Polygonatum geminiflorum , and their morphological features were evaluated by transmission electron microscopy, X-ray diffraction spectroscopy and energy dispersive X-ray analysis. In vitro Antifungal activity of the synthesized silver nanoparticles (AgNPs) and P. geminiflorum extract (PE) either alone or in combination (PE-AgNPs) against Fusarium oxysporum was evaluated using disc-diffusion and well-diffusion methods. In planta assay of the same treatments against Fusarium wilt diseases of tomato was evaluated by foliar spray method. Moreover, plant extract was evaluated for the quantitative investigation of antioxidant activity, phenolics and flavonoids by spectroscopic and HPLC techniques. Phytochemical analysis indicated the presence of total phenolic and flavonoid contents as 48.32 mg ± 1.54 mg GAE/g and 57.08 mg ± 1.36 mg QE/g, respectively. The DPPH radical scavenging of leaf extract was found to be 88.23% ± 0.87%. Besides, the HPLC phenolic profile showed the presence of 15 bioactive phenolic compounds. Characterization of nanoparticles revealed the size ranging from 8 nm to 34 nm with average crystallite size of 27 nm. The FTIR analysis revealed important functional groups that were responsible for the reduction and stabilization of AgNPs. In the in vitro assays, 100 μg/ml of AgNPs and AgNPs-PE strongly inhibited Fusarium oxysporum. The same treatments tested against Fusarium sprayed on tomato plants in controlled environment exhibited nearly 100% plant survival with no observable phytotoxicity. These finding provide a simple baseline to control Fusarium wilt using silver nano bio-control agents without affecting the crop health.
Collapse
Affiliation(s)
- Maaz Ahmad
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research Center of Fruit Wine, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Swat, Pakistan
| | - Ahmad Ali
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Swat, Pakistan
| | - Zahid Ullah
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Swat, Pakistan
| | - Hassan Sher
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Swat, Pakistan
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research Center of Fruit Wine, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China
| | - Mohammad Ali
- Centre for Biotechnology and Microbiology, University of Swat, Charbagh, Swat, Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Iftikhar Ali
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Swat, Pakistan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|