1
|
Lu J, An Y, Wang X, Zhang C, Guo S, Ma Y, Qiu Y, Wang S. Alleviating effect of chlorogenic acid on oxidative damage caused by hydrogen peroxide in bovine intestinal epithelial cells. J Vet Med Sci 2024; 86:1016-1026. [PMID: 39069486 PMCID: PMC11422687 DOI: 10.1292/jvms.24-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Chlorogenic acid (CGA) is a polyphenol substance contained in many plants, which has good antioxidant activity. This experiment aimed to explore the protective effects of CGA on hydrogen peroxide (H2O2)-induced inflammatory response, apoptosis, and antioxidant capacity of bovine intestinal epithelial cells (BIECs-21) under oxidative stress and its mechanism. The results showed that compared with cells treated with H2O2 alone, CGA pretreatment could improve the viability of BIECs-21. Importantly, Chlorogenic acid pretreatment significantly reduced the formation of malondialdehyde (MDA), lowered reactive oxygen species (ROS) levels, and enhanced the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) (P<0.05). In addition, CGA can also improve the intestinal barrier by increasing the abundance of tight junction proteins claudin-1 and occludin. Meanwhile, CGA can reduce the gene expression levels of pro-inflammatory factors Interleukin-6 (IL-6) and Interleukin-8 (IL-8), increase the expression of anti-inflammatory factor Interleukin-10 (IL-10), promote the expression of the nuclear factor-related factor 2 (Nrf2) signaling pathway, enhance cell antioxidant capacity, and inhibit Nuclear Factor Kappa B (NF-κB) the activation of the signaling pathway reducing the inflammatory response, thereby alleviating inflammation and oxidative stress damage.
Collapse
Affiliation(s)
- Jia Lu
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yongsheng An
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Xueying Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Shuai Guo
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yanbo Ma
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yan Qiu
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Shuai Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
2
|
Zhou N, Cao Y, Luo Y, Wang L, Li R, Di H, Gu T, Cao Y, Zeng T, Zhu J, Chen L, An D, Ma Y, Xu W, Tian Y, Lu L. The Effects of Resveratrol and Apigenin on Jejunal Oxidative Injury in Ducks and on Immortalized Duck Intestinal Epithelial Cells Exposed to H 2O 2. Antioxidants (Basel) 2024; 13:611. [PMID: 38790716 PMCID: PMC11117746 DOI: 10.3390/antiox13050611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress increases the apoptosis of intestinal epithelial cells and impairs intestinal epithelial cell renewal, which further promotes intestinal barrier dysfunction and even death. Extensive evidence supports that resveratrol and apigenin have antioxidant, anti-inflammatory, and antiproliferative properties. Here, we investigated the ability of these two compounds to alleviate diquat-induced jejunal oxidative stress and morphological injury, using the duck as a model, as well as the effects of apigenin on oxidative stress induced by H2O2 in immortalized duck intestinal epithelial cells (IDECs). Ducks were randomly assigned to the following four groups, with five replicates: a control (CON) group, a diquat-challenged (DIQ) group, a resveratrol (500 mg/kg) + diquat (RES) group, and an apigenin (500 mg/kg) + diquat (API) group. We found that serum catalase (CAT) activity and total antioxidant capacity (T-AOC) markedly reduced in the RES and API groups as compared to the DIQ group (p < 0.05); moreover, serum S superoxide dismutase (SOD) levels increased significantly in the API group as compared to the DIQ group (p < 0.05). In jejunal mucosa, the malondialdehyde (MDA) content in the RES and API groups decreased more than that in the DIQ group (p < 0.05). In addition, the jejunal expression levels of the NRF2 and GCLM genes in the RES and API groups increased notably compared with those in the DIQ group (p < 0.05); meanwhile, CAT activity in the RES and API groups was markedly elevated compared with that in the CON group (p < 0.05). In IDECs, apigenin significantly restrained the H2O2-mediated increase in MDA content and decrease in CAT levels (p < 0.05). Furthermore, apigenin increased the protein expression of p-NRF2, NRF2, p-AKT, and p-P38; downregulated that of cleaved caspase-3 and cleaved caspase-9; and reduced the ratio of Bax/Bcl-2 in H2O2-treated IDECs (p < 0.05). In conclusion, resveratrol and apigenin can be used as natural feed additives to protect against jejunal oxidative stress in ducks.
Collapse
Affiliation(s)
- Ning Zhou
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongqing Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Youwen Luo
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Lihua Wang
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Ruiqing Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Heshuang Di
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Yun Cao
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Jianping Zhu
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Dong An
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Yue Ma
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Lizhi Lu
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| |
Collapse
|
3
|
Chen H, Li J, Pan X, Hu Z, Cai J, Xia Z, Qi N, Liao S, Spritzer Z, Bai Y, Sun M. A novel avian intestinal epithelial cell line: its characterization and exploration as an in vitro infection culture model for Eimeria species. Parasit Vectors 2024; 17:25. [PMID: 38243250 PMCID: PMC10799501 DOI: 10.1186/s13071-023-06090-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/10/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The gastrointestinal epithelium plays an important role in directing recognition by the immune system, and epithelial cells provide the host's front line of defense against microorganisms. However, it is difficult to cultivate avian intestinal epithelial cells in vitro for lengthy periods, and the lack of available cell lines limits the research on avian intestinal diseases and nutritional regulation. Chicken coccidiosis is a serious intestinal disease that causes significant economic losses in the poultry industry. In vitro, some cell line models are beneficial for the development of Eimeria species; however, only partial reproduction can be achieved. Therefore, we sought to develop a new model with both the natural host and epithelial cell phenotypes. METHODS In this study, we use the SV40 large T antigen (SV40T) gene to generate an immortalized cell line. Single-cell screening technology was used to sort positive cell clusters with epithelial characteristics for passage. Polymerase chain reaction (PCR) identification, immunofluorescence detection, and bulk RNA sequencing analysis and validation were used to check the expression of epithelial cell markers and characterize the avian intestinal epithelial cell line (AIEC). AIECs were infected with sporozoites, and their ability to support the in vitro endogenous development of Eimeria tenella was assessed. RESULTS This novel AIEC consistently expressed intestinal epithelial markers. Transcriptome assays revealed the upregulation of genes associated with proliferation and downregulation of genes associated with apoptosis. We sought to compare E. tenella infection between an existing fibroblast cell line (DF-1) and several passages of AIEC and found that the invasion efficiency was significantly increased relative to that of chicken fibroblast cell lines. CONCLUSIONS An AIEC will serve as a better in vitro research model, especially in the study of Eimeria species development and the mechanisms of parasite-host interactions. Using AIEC helps us understand the involvement of intestinal epithelial cells in the digestive tract and the immune defense of the chickens, which will contribute to the epithelial innate defense against microbial infection in the gastrointestinal tract.
Collapse
Affiliation(s)
- Huifang Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Juan Li
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiaoting Pan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhichao Hu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Jianfeng Cai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Zijie Xia
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nanshan Qi
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shenquan Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zachary Spritzer
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yinshan Bai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China.
| | - Mingfei Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
4
|
Lin CY, Wu CY, Wang CC, Lee CH. Exposure to phenols reduces melanogenesis in B16F10 cells and zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106806. [PMID: 38134820 DOI: 10.1016/j.aquatox.2023.106806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Phenols, ubiquitous environmental contaminants found in water, soil, and air, pose risks to organisms even at minimal concentrations, and many are classified as hazardous pollutants. Skin pigmentation is a natural shield against ultraviolet-induced DNA damage and oxidative stress, pivotal in reducing skin cancer incidences. Studies on B16F10 melanoma cells and zebrafish offer valuable insights into potential therapeutic avenues for melanoma in the context of phenol exposure. Upon phenol treatment, there was a marked decrease in melanin content and melanogenesis-associated protein expression, such as tyrosinase and the microphthalmia-associated transcription factor (MITF) in these melanoma cells. Additionally, phenols led to diminished p38 phosphorylation, amplified extracellular signal-regulated kinase (ERK) phosphorylation, and curtailed melanin expression in zebrafish. These observations underscore the detrimental impact of phenols on melanogenesis and propose a mechanism of action centered on the ERK/p38 signaling pathway. Consequently, our data spotlight the adverse effects of phenols on melanogenesis."
Collapse
Affiliation(s)
- Chung-Yu Lin
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chia C Wang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40433, Taiwan; International Ph.D. Program for Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
5
|
Meng S, An Y, Wang Y, Wang S, Wang H, Shao Q, Dou M, He L, Zhang C. Tea polyphenols protect bovine intestinal epithelial cells from the adverse effects of heat-stress in vitro. Anim Biotechnol 2023; 34:3934-3945. [PMID: 37647094 DOI: 10.1080/10495398.2023.2244569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Heat-stress (HS) leads to impaired gut health, adversely affecting milk production of dairy cows. In the present study, we investigated the protective effects of tea polyphenols (TP) against HS-induced damage in bovine intestinal epithelial cells (BIECs) and explored the underlying mechanisms. Primary BIECs were isolated from bovine duodenum, cultured and treated as follows: (1) control cells incubated in complete medium at 37 °C for 12 h, (2) TP group incubated in medium containing 100 μg/mL TP at 37 °C for 12 h, (3) HS group incubated in medium at 37 °C for 6 h followed by 6 h at 42 °C, and (4) HS + TP group incubated with 100 μg/mL TP for 6 h at 37 °C and 6 h at 42 °C. TP improved cell viability and antioxidant capacity, and decreased apoptosis and LDH activity. TP led to upregulation of Nrf2 and its target antioxidant genes HO-1, NQO1 and SOD1 expression. TP significantly decreased the expression of proinflammatory cytokine genes (NF-κB, IL-6 and TNF-α), and increased expression of the anti-inflammatory cytokine gene, IL-10. The above results suggested that TP protected BIECs from HS-induced adverse effects by alleviating oxidative stress and inflammatory responses, indicating that TP can alleviate HS-induced intestinal damage in dairy cows.
Collapse
Affiliation(s)
- Sudan Meng
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
- Innovative Research Team of Livestock Intelligent Breeding and Equipment, Longmen Laboratory, Luoyang, China
| | - Yongsheng An
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yuexin Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Shuai Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Hongwei Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Qi Shao
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Mengying Dou
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Lei He
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China
| |
Collapse
|
6
|
Yun Y, Shi H, Wang Y, Yang F, Zhang Y, Feng H, Chen J, Wang X. Pre-Protection and Mechanism of Crude Extracts from Dioscorea alata L. on H 2O 2-Induced IPEC-J2 Cells Oxidative Damage. Animals (Basel) 2023; 13:ani13081401. [PMID: 37106964 PMCID: PMC10135252 DOI: 10.3390/ani13081401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The purple tubers of Dioscorea alata L. have been found to contain a variety of bioactive chemical components, including anthocyanins, which make it significant to investigate the pre-protective effects of Dioscorea alata L. and its crude extracts on cells prior to oxidative stress. To establish a suitable oxidative damage model, an injured model of IPEC-J2 cells was created using H2O2 as the oxidant. Specifically, when the concentration of H2O2 was 120 μmol/L and the injured time was 8 h, the survival rate of cells decreased to approximately 70%, and the cells exhibited a noticeable oxidative stress reaction. Moreover, the crude extracts of Dioscorea alata L. demonstrated beneficial pre-protective effects on IPEC-J2 cells by increasing the total antioxidant capacity (T-AOC) and catalase (CAT) activities, augmenting the expression of total superoxide dismutase (T-SOD) and its genes, reducing the content of malondialdehyde (MDA) and the activity of glutathione peroxidase (GSH-PX) and its expression of genes, and promoting the expression of glucose transporter SGLT1 gene while reducing that of GULT2 gene, thereby facilitating the entry of anthocyanins into cells. In addition, the 50 μg/mL crude extracts effectively inhibited the phosphorylation of IκB and the p65 protein, thus reducing cellular oxidative stress. Given these findings, Dioscorea alata L. can be considered a natural antioxidant for practical breeding and production purposes, with an optimal concentration of crude extracts in this experiment being 50 μg/mL.
Collapse
Affiliation(s)
- Yanhong Yun
- College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Huiyu Shi
- College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Yanyu Wang
- College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Fengyuan Yang
- College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Yuanxin Zhang
- College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Haibo Feng
- College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Junpu Chen
- College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Xuemei Wang
- College of Animal Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
7
|
Xu Z, Zhang Y, Lu D, Zhang G, Li Y, Lu Z, Wang F, Wang G. Antisenescence ZIF-8/Resveratrol Nanoformulation with Potential for Enhancement of Bone Fracture Healing in the Elderly. ACS Biomater Sci Eng 2023; 9:2636-2646. [PMID: 37036053 DOI: 10.1021/acsbiomaterials.3c00090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Accumulation of senescent cells in the elderly impairs bone homeostasis. It is important to alleviate cell senescence and scavenge excessive oxidative stress for enhanced bone fracture healing in elderly patients. In this study, resveratrol (RSV), an antioxidant drug, was encapsulated in a biocompatible zeolitic imidazolate framework-8 (ZIF-8) nanoparticle to protect it from oxidation and improve its bioavailability. Cells responsible for bone healing, including osteoblasts, bone marrow-derived mesenchymal stem cells (BMSCs), macrophages, and endothelial cells, were used to evaluate the regulatory role of the nanoformulation in the alleviation of cellular senescence and promotion of cell functions. It was proved that the nanoformulation sustainably released RSV with well-preserved bioactivity and improved bioavailability. Cell experiments confirmed that ZIF-8/RSV was capable of alleviating the senescence of cells [human osteoblasts (HOBs), BMSCs, H2O2-induced senescent vascular endothelial cells (HUVECs)] and scavenging excessive intracellular reactive oxygen species (ROS). Excitingly, the ZIF-8/RSV improved the osteogenic ability of senescent osteoblasts and promoted macrophage M2 polarization. In addition, the ZIF-8/RSV also enhanced the angiogenic function of senescent HUVECs. More importantly, the ZIF-8/RSV nanoformulation outperformed the REV alone, indicating the critical role of encapsulation using ZIF-8. These findings suggest that the ZIF-8/RSV nanoformulation exhibits potential for bone fracture treatment in elderly patients.
Collapse
Affiliation(s)
- Zhengjiang Xu
- Research Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Zhang
- Research Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, Shenzhen, China
| | - Danping Lu
- Research Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, Shenzhen, China
| | - Guofang Zhang
- Laboratory of Immunology and Nanomedicine, Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, Shenzhen, China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, Shenzhen, China
| | - Zufu Lu
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, Sydney 2006, NSW, Australia
| | - Fei Wang
- Department of Spine Surgery, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Guocheng Wang
- Research Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, Shenzhen, China
| |
Collapse
|
8
|
Song Z, Jin C, Bian Z, Liang C. Radial Extracorporeal Shock Wave Therapy Combined with Resveratrol Derivative Alleviates Chronic Nonbacterial Prostatitis in Rats. Inflammation 2023; 46:584-597. [PMID: 36434437 DOI: 10.1007/s10753-022-01757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/21/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022]
Abstract
Resveratrol (Res) is a non-flavonoid polyphenol compound with biological pleiotropic properties, but low bioavailability limits its application value. Here, we synthesized a new Res derivative ((E)-5-(dimethylamino)-2-(4-methoxystyryl)phenol), and attempted to determine the function of Res derivative combined with radial extracorporeal shock wave therapy (rESWT) in chronic nonbacterial prostatitis (CNP). CNP model rats were constructed by subcutaneous administration of prostatein suspension (15 mg/ml), followed by rESWT treatment alone or in associated with Res or Res derivatives. In this study, inflammatory cell infiltration and tissue fibrosis in the prostate tissues of CNP rats were significantly deteriorated, which was effectively abolished by rESWT treatment alone or in combination with Res or Res derivative. The expression of interleukin 1β (IL-1β), tumor necrosis factor-α (TNF-α), nerve growth factor (NGF), and nuclear factor kappa-B (NF-κB) were increased, while silent information regulator 1 (SIRT1) expression was suppressed in the prostate tissues of CNP rats, which were then rescued by rESWT treatment alone or in associated with Res or Res derivative. Importantly, compared with Res derivative treatment alone or rESWT combined with Res treatment, combination treatment with rESWT and Res derivative was more effective in alleviating inflammation and fibrosis, in reducing IL-1β, TNF-α, NGF, and SIRT1 expression, and in facilitating SIRT1 expression. Overall, rESWT combined with Res derivative treatment improved CNP in rat by reducing inflammation and fibrosis, which attributed to regulate the expression of SIRT1 and NF-κB. Thus, this work provides a theoretical basis for rESWT combined with Res derivative in the clinical treatment of CNP.
Collapse
Affiliation(s)
- Zhengyao Song
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Chen Jin
- Department of Urology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Zichen Bian
- Department of Urology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|