1
|
Beltrame G, Damerau A, Ahonen E, Mustonen SA, Adami R, Sellitto MR, Del Gaudio P, Linderborg KM. Production and simulated digestion of high-load beads containing Schizochytrium oil encapsulated utilizing prilling technique. Food Chem 2024; 460:140694. [PMID: 39126940 DOI: 10.1016/j.foodchem.2024.140694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/01/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
The oil from the heterotroph Schizochytrium is a rich source of n-3 PUFA, particularly DHA, and therefore highly susceptible to oxidation. The present work reports the first application of coaxial prilling for the protection of this oil through microencapsulation. After process optimization, core-shell microparticles were produced with calcium or zinc alginate at different concentrations. Encapsulates were analyzed in their tocopherol and PUFA content. Prilling lowered the earlier but had little effect on the latter. Microcapsules coated with calcium alginate (1 % and 1.75 %) had higher oil load and encapsulation efficiency and were therefore submitted to in vitro digestion together with a simulated meal. Digesta were also analyzed with HPLC-qTOF and 1H NMR and compared to undigested encapsulates. While 1 % calcium shell granted lower oil release and protection from oxidation in the simulated gastrointestinal tract, chromatographic and spectroscopic data of digesta showed higher presence of lipid digestion products.
Collapse
Affiliation(s)
- Gabriele Beltrame
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Annelie Damerau
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Eija Ahonen
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Sari A Mustonen
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Renata Adami
- Department of Physics, University of Salerno, IT-84084 Fisciano, Italy
| | | | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, IT-84084 Fisciano, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, IT-84084 Fisciano, Italy.
| | - Kaisa M Linderborg
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
2
|
Dąbrowski G, Czaplicki S, Szustak M, Korkus E, Gendaszewska-Darmach E, Konopka I. The impact of selected xanthophylls on oil hydrolysis by pancreatic lipase: in silico and in vitro studies. Sci Rep 2024; 14:2731. [PMID: 38302772 PMCID: PMC10834431 DOI: 10.1038/s41598-024-53312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
Lipase inhibition is one of the directions to control obesity. In vitro assays have confirmed the inhibitory effect of selected xanthophylls, including astaxanthin, fucoxanthinol, fucoxanthin, and neoxanthin. Similarly, an in-silico study also demonstrated the successful inhibition of pancreatic lipase by astaxanthin. Unfortunately, the efficacy of these protocols in the emulsion state typical of lipid digestion remains untested. To address this issue, the current study employed the pH-stat test, which mimics lipid digestion in the gastrointestinal tract, to evaluate native and prepared sea buckthorn and rapeseed oils with varying xanthophyll contents from 0 to 1400 mg/kg oil. Furthermore, a molecular docking of zeaxanthin and violaxanthin (commonly found in plant-based foods), astaxanthin (widely distributed in foods of marine origin) and orlistat (approved as a drug) was performed. The in-silico studies revealed comparable inhibitory potential of all tested xanthophylls (variation from - 8.0 to - 9.3 kcal/mol), surpassing that of orlistat (- 6.5 kcal/mol). Nonetheless, when tested in an emulsified state, the results of pH-stat digestion failed to establish the inhibitory effect of xanthophylls in the digested oils. In fact, lipolysis of native xanthophyll-rich sea buckthorn oil was approximately 22% higher than that of the xanthophyll-low preparation. The key insight derived from this study is that the amphiphilic properties of xanthophylls during the digestion of xanthophyll-rich lipids/meals facilitate emulsion formation, which leads to enhanced fat lipolysis.
Collapse
Affiliation(s)
- Grzegorz Dąbrowski
- Faculty of Food Sciences, Chair of Plant Food Chemistry and Processing, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-726, Olsztyn, Poland.
| | - Sylwester Czaplicki
- Faculty of Food Sciences, Chair of Plant Food Chemistry and Processing, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-726, Olsztyn, Poland
| | - Marcin Szustak
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland
| | - Eliza Korkus
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland
| | - Edyta Gendaszewska-Darmach
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland
| | - Iwona Konopka
- Faculty of Food Sciences, Chair of Plant Food Chemistry and Processing, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-726, Olsztyn, Poland
| |
Collapse
|
3
|
Kalajahi SG, Malekjani N, Samborska K, Akbarbaglu Z, Gharehbeglou P, Sarabandi K, Jafari SM. The enzymatic modification of whey-proteins for spray drying encapsulation of Ginkgo-biloba extract. Int J Biol Macromol 2023:125548. [PMID: 37356680 DOI: 10.1016/j.ijbiomac.2023.125548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Ginkgo biloba extract (GBLE) contains many bioactives including flavonoids and terpene trilactones that play some pharmacological roles. These compounds are sensitive to operating conditions; so, encapsulation is a suitable approach to protect them. In this study, different carriers including maltodextrin (MD), and its combination with gum-Arabic (MD-GA), whey protein concentrate (MD-WPC), and whey-protein hydrolysate (MD-HWPC) were used to encapsulate GBLE. Powder production yield, physicochemical/functional characteristics, physical stability and flowability of particles were affected by the type and composition of carriers. FTIR results indicated the placement of phenolic compounds in the carrier matrix. The SEM images also showed the morphological changes of particles (especially the size, indentation and surface shrinkage) under the influence of various carriers. Microencapsulated powders formulated using MD-HWPC showed the highest values of TPC, DPPH, and ABTS and a lighter color which determined the suitability of this wall material (due to the improvement of surface activity and emulsifying properties of protein as a result of partial enzymatic hydrolysis) to protect the antioxidant properties of GBLE during spray-drying, improving the production yield and preserving physical and functional characteristics of the encapsulated powders.
Collapse
Affiliation(s)
- Sina Ghadimi Kalajahi
- Occupational Health Research Center, Iran National Standards Organization (INSO), Tabriz, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Katarzyna Samborska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Poland
| | - Zahra Akbarbaglu
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Pouria Gharehbeglou
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khashayar Sarabandi
- Department of Food Science & Technology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Seid Mahdi Jafari
- Department of Food Materials & Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|