1
|
Espargaró A, Álvarez-Berbel I, Busquets MA, Sabate R. In Vivo Assays for Amyloid-Related Diseases. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:433-458. [PMID: 38598824 DOI: 10.1146/annurev-anchem-061622-023326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Amyloid-related diseases, such as Alzheimer's and Parkinson's disease, are devastating conditions caused by the accumulation of abnormal protein aggregates known as amyloid fibrils. While assays involving animal models are essential for understanding the pathogenesis and developing therapies, a wide array of standard analytical techniques exists to enhance our understanding of these disorders. These techniques provide valuable information on the formation and propagation of amyloid fibrils, as well as the pharmacokinetics and pharmacodynamics of candidate drugs. Despite ethical concerns surrounding animal use, animal models remain vital tools in the search for treatments. Regardless of the specific animal model chosen, the analytical methods used are usually standardized. Therefore, the main objective of this review is to categorize and outline the primary analytical methods used in in vivo assays for amyloid-related diseases, highlighting their critical role in furthering our understanding of these disorders and developing effective therapies.
Collapse
Affiliation(s)
- Alba Espargaró
- 1Department of Pharmacy and Pharmaceutical Technology and Department of Physical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain;
- 2Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Irene Álvarez-Berbel
- 1Department of Pharmacy and Pharmaceutical Technology and Department of Physical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain;
| | - Maria Antònia Busquets
- 1Department of Pharmacy and Pharmaceutical Technology and Department of Physical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain;
- 2Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Raimon Sabate
- 1Department of Pharmacy and Pharmaceutical Technology and Department of Physical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain;
- 2Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Fan X, Xiao X, Yu W, Yu B, He J, Zheng P, Yu J, Luo J, Luo Y, Yan H, Wang J, Wu A, Wang Q, Wang H, Mao X. Yucca schidigera purpurea-sourced arabinogalactan polysaccharides augments antioxidant capacity facilitating intestinal antioxidant functions. Carbohydr Polym 2024; 326:121613. [PMID: 38142074 DOI: 10.1016/j.carbpol.2023.121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/25/2023]
Abstract
This study isolated and purified a novel homogeneous arabinogalactan polysaccharide from Yucca schidigera extract (YSE), unveiled its unique structure and explored its antioxidant function. Firstly, the antioxidant potential of YSE was demonstrated in piglet trials. A homogeneous polysaccharide with a molecular weight of 24.2 kDa, designated as Yucca schidigera polysaccharide B (YPB), was isolated and purified from YSE. The monosaccharide composition of YPB was Rha, Araf, Galp, and Glcp, whose molar percentages were 2.8 %, 11.6 %, 45.5 %, and 40.0 %, respectively. Methylation analysis combined with 1D and 2D nuclear magnetic resonance showed that YPB was a complex polysaccharide with a main glycosidic linkage pattern of →2)-α-ʟ-Rha-(1 → 3)-β-ᴅ-Galp-(1→3)-β-ᴅ-Galp-(1 → 3)-β-ᴅ-Galp-(1 → 3)-β-ᴅ-Glcp-(1→, and branched Araf and Galp fragments were connected with the main chain through →3,6)-β-ᴅ-Galp-(1→, →3,4)-β-ᴅ-Glcp-(1→, and →2,4)-α-ʟ-Rha-(1→ linkages. Following the in vitro biochemical assays of bioactive components, YPB should be the contributor to the antioxidant activity in YSE. Based on the establishment of oxidative stress model, YPB exhibited strong antioxidant capacity and activated NRF2 pathway, and then provided protection against the damage induced oxidative stress in IPEC-J2 cells and rats. Further analysis with inhibitors found that this antioxidant effect was attributed to its interaction with epidermal growth factor receptor and mannose receptor, and stimulating PI3K/AKT pathway.
Collapse
Affiliation(s)
- Xiangqi Fan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Xiangjun Xiao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Wei Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jiangping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Quyuan Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Huifen Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China.
| |
Collapse
|
3
|
Tejada S, Sarubbo F, Jiménez-García M, Ramis MR, Monserrat-Mesquida M, Quetglas-Llabrés MM, Capó X, Esteban S, Sureda A, Moranta D. Mitigating Age-Related Cognitive Decline and Oxidative Status in Rats Treated with Catechin and Polyphenon-60. Nutrients 2024; 16:368. [PMID: 38337652 PMCID: PMC10857701 DOI: 10.3390/nu16030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Aging is a normal physiological process influenced by the combination of multiple mechanisms, primarily oxidative stress and neuroinflammation, which impact general physiology and brain function. Phenolic compounds have demonstrated the ability to slow down the aging process of the brain due to their antioxidant and anti-inflammatory effects. This study assessed the protective properties of catechin and polyphenon-60 in non-pathologically aged rats regarding visuo-spatial learning and the oxidative status of the frontal cortex. Old animals were treated with catechin or green tea extract (polyphenon-60) for 36 days, daily. Healthy old and young rats were used as controls. During the first training phase, treated rats executed the test better, locating the target in less time compared with the controls. Biomarkers of oxidative stress (catalase activities, superoxide dismutase, glutathione reductase, and glutathione S-transferase) were reduced in the brain of old animals, although their activities were partially improved after both antioxidant treatments. Furthermore, the rise in the production of reactive oxygen species and malondialdehyde levels-a marker of lipid peroxidation-in the frontal cortex of aged animals was significantly ameliorated after the interventions. In conclusion, old rats exhibited enhanced cognitive function and reduced stress levels following the administration of catechin and polyphenon-60.
Collapse
Affiliation(s)
- Silvia Tejada
- Laboratory of Neurophysiology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain; (S.T.); (F.S.); (M.J.-G.); (M.R.R.); (S.E.); (D.M.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (M.M.-M.); (M.M.Q.-L.); (X.C.)
| | - Fiorella Sarubbo
- Laboratory of Neurophysiology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain; (S.T.); (F.S.); (M.J.-G.); (M.R.R.); (S.E.); (D.M.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (M.M.-M.); (M.M.Q.-L.); (X.C.)
| | - Manuel Jiménez-García
- Laboratory of Neurophysiology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain; (S.T.); (F.S.); (M.J.-G.); (M.R.R.); (S.E.); (D.M.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (M.M.-M.); (M.M.Q.-L.); (X.C.)
| | - Margarida R. Ramis
- Laboratory of Neurophysiology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain; (S.T.); (F.S.); (M.J.-G.); (M.R.R.); (S.E.); (D.M.)
| | - Margalida Monserrat-Mesquida
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (M.M.-M.); (M.M.Q.-L.); (X.C.)
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Maria Magdalena Quetglas-Llabrés
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (M.M.-M.); (M.M.Q.-L.); (X.C.)
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Xavier Capó
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (M.M.-M.); (M.M.Q.-L.); (X.C.)
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Susana Esteban
- Laboratory of Neurophysiology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain; (S.T.); (F.S.); (M.J.-G.); (M.R.R.); (S.E.); (D.M.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (M.M.-M.); (M.M.Q.-L.); (X.C.)
| | - Antoni Sureda
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (M.M.-M.); (M.M.Q.-L.); (X.C.)
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Spain
| | - David Moranta
- Laboratory of Neurophysiology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain; (S.T.); (F.S.); (M.J.-G.); (M.R.R.); (S.E.); (D.M.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (M.M.-M.); (M.M.Q.-L.); (X.C.)
| |
Collapse
|
4
|
Lai NHY, Mohd Zahir IA, Liew AKY, Ogawa S, Parhar I, Soga T. Teleosts as behaviour test models for social stress. Front Behav Neurosci 2023; 17:1205175. [PMID: 37744951 PMCID: PMC10512554 DOI: 10.3389/fnbeh.2023.1205175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Stress is an important aspect of our everyday life and exposure to it is an unavoidable occurrence. In humans, this can come in the form of social stress or physical stress from an injury. Studies in animal models have helped researchers to understand the body's adaptive response to stress in human. Notably, the use of behavioural tests in animal models plays a pivotal role in understanding the neural, endocrine and behavioural changes induced by social stress. Under socially stressed conditions, behavioural parameters are often measured physiological and molecular parameters as changes in behaviour are direct responses to stress and are easily assessed by behavioural tests. Throughout the past few decades, the rodent model has been used as a well-established animal model for stress and behavioural changes. Recently, more attention has been drawn towards using fish as an animal model. Common fish models such as zebrafish, medaka, and African cichlids have the advantage of a higher rate of reproduction, easier handling techniques, sociability and most importantly, share evolutionary conserved genetic make-up, neural circuitry, neuropeptide molecular structure and function with mammalian species. In fact, some fish species exhibit a clear diurnal or seasonal rhythmicity in their stress response, similar to humans, as opposed to rodents. Various social stress models have been established in fish including but not limited to chronic social defeat stress, social stress avoidance, and social stress-related decision-making. The huge variety of behavioural patterns in teleost also aids in the study of more behavioural phenotypes than the mammalian species. In this review, we focus on the use of fish models as alternative models to study the effects of stress on different types of behaviours. Finally, fish behavioural tests against the typical mammalian model-based behavioural test are compared and discussed for their viability.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomoko Soga
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
5
|
Pecio Ł, Pecio S, Mroczek T, Oleszek W. Spiro-Flavonoids in Nature: A Critical Review of Structural Diversity and Bioactivity. Molecules 2023; 28:5420. [PMID: 37513292 PMCID: PMC10385819 DOI: 10.3390/molecules28145420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Based on the literature data from 1973 to 2022, this work summarizes reports on spiro-flavonoids with a spiro-carbon at the center of their structure and how this affects their isolation methods, stereochemistry, and biological activity. The review collects 65 unique structures, including spiro-biflavonoids, spiro-triflavonoids, spiro-tetraflavonoids, spiro-flavostilbenoids, and scillascillin-type homoisoflavonoids. Scillascillin-type homoisoflavonoids comprise spiro[bicyclo[4.2.0]octane-7,3'-chromane]-1(6),2,4-trien-4'-one, while the other spiro-flavonoids contain either 2H,2'H-3,3'-spirobi[benzofuran]-2-one or 2'H,3H-2,3'-spirobi[benzofuran]-3-one in the core of their structures. Spiro-flavonoids have been described in more than 40 species of eight families, including Asparagaceae, Cistaceae, Cupressaceae, Fabaceae, Pentaphylacaceae, Pinaceae, Thymelaeaceae, and Vitaceae. The possible biosynthetic pathways for each group of spiro-flavonoids are summarized in detail. Anti-inflammatory and anticancer activities are the most important biological activities of spiro-flavonoids, both in vitro and in vivo. Our work identifies the most promising natural sources, the existing challenges in assigning the stereochemistry of these compounds, and future research perspectives.
Collapse
Affiliation(s)
- Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, 8 Czartoryskich Street, 24-100 Puławy, Poland
- Department of Chemistry of Natural Products, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Solomiia Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, 8 Czartoryskich Street, 24-100 Puławy, Poland
| | - Tomasz Mroczek
- Department of Chemistry of Natural Products, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, 8 Czartoryskich Street, 24-100 Puławy, Poland
| |
Collapse
|
6
|
Pecio Ł, Alilou M, Kozachok S, Orhan IE, Eren G, Şenol Deniz FS, Stuppner H, Oleszek W. Absolute configuration of spiro-flavostilbenoids from Yucca schidigera Roezl ex Ortgies: First indication of (2R)-naringenin as the key building block. PHYTOCHEMISTRY 2023; 207:113584. [PMID: 36603655 DOI: 10.1016/j.phytochem.2022.113584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The absolute configurations of the known but unusual spiro-flavostilbenoids found in the bark of Yucca schidigera Roezl ex Ortgies, were determined by applying time-dependent density functional theory simulation of electronic circular dichroism spectra. The absolute configurations obtained were as follows: (2S,3R) for yuccaol A, yuccaol D and yuccalide A; (2S,3S) for yuccaol B, yuccaol C and yuccaol E; (2S,3S,2'S,3'S) for gloriosaol A; (2S,3R,2'S,3'R) for gloriosaol C; (2S,3S,2'S,3'R) for gloriosaol D; (2S,3R,2'S,3'S) for gloriosaol E. These findings indicate that the compounds are all biosynthetic derivatives either of (2R)-naringenin and trans-resveratrol or of trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene. In contrast, gloriosaols are direct derivatives of yuccaols (note that substituting by stilbenoid changes the absolute configuration of C-2 naringenin carbon to 2S). A putative mechanism for their biosynthesis is proposed taking into account key aspects of regio- and stereoselectivity. Yuccaol B and gloriosaol A showed in vitro moderate inhibitory effects against acetyl-/butyrylcholinesterases (AChE/BChE) with IC50 values of 43/81 and 45/65 μM respectively. The selectivity index values calculated from the IC50 values of BChE and AChE were 1.9 and 1.4. Molecular docking simulations showed their interaction with the peripheral anionic site of human AChE and the catalytic site of the human BChE.
Collapse
Affiliation(s)
- Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland.
| | - Mostafa Alilou
- Institute of Pharmacy, Department of Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria.
| | - Solomiia Kozachok
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Gökçen Eren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | | | - Hermann Stuppner
- Institute of Pharmacy, Department of Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| |
Collapse
|
7
|
Alsubait IS, Alhidary IA, Al-Haidary AA. Effects of Different Levels of Yucca Supplementation on Growth Rates, Metabolic Profiles, Fecal Odor Emissions, and Carcass Traits of Growing Lambs. Animals (Basel) 2023; 13:755. [PMID: 36830541 PMCID: PMC9952356 DOI: 10.3390/ani13040755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Sixty male Awassi lambs were used to investigate the effects of dietary Yucca schidgera extract (YS) on the production, fecal and urinary odor emissions, and carcass traits of growing lambs fed complete pellets. Lambs were fed either a complete pelleted diet without yucca (control) or supplemented with 300 or 600 mg YS/kg dry matter (DM) during the 84-day experiment. The weights and feed consumption of the lambs were measured weekly. Blood samples were taken on days 1, 28, 58, and 84, and ruminal fluid samples were collected on day 70. On day 90, the odor emissions from feces and urine were measured. On day 84, 12 lambs were slaughtered for the evaluation of carcass and meat quality. The final values for bodyweight, bodyweight gain, and feed efficiency of lambs fed the YS300 diet were 3.40%, 6.64%, and 6.17%, respectively, higher (p < 0.05) than those fed the YS600 diet. Additionally, the percentage of dressing, myofibril fragmentation index, and ruminal isovalerate percentage of lambs treated with YS600 were higher than those treated with YS300. Compared with the control, the addition of yucca reduced odor emissions from feces and urine. In conclusion, dietary YS300 had no additional benefits on growth rate, feed efficiency, and carcass traits, while dietary YS600 improved fecal and urinary odors.
Collapse
Affiliation(s)
| | - Ibrahim A. Alhidary
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|