1
|
Tran TK, Nguyen MK, Lin C, Hoang TD, Nguyen TC, Lone AM, Khedulkar AP, Gaballah MS, Singh J, Chung WJ, Nguyen DD. Review on fate, transport, toxicity and health risk of nanoparticles in natural ecosystems: Emerging challenges in the modern age and solutions toward a sustainable environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169331. [PMID: 38103619 DOI: 10.1016/j.scitotenv.2023.169331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
In today's era, nanoparticles (NPs) have become an integral part of human life, finding extensive applications in various fields of science, pharmacy, medicine, industry, electronics, and communication. The increasing popularity of NP usage worldwide is a testament to their tremendous potential. However, the widespread deployment of NPs unavoidably leads to their release into the environmental matrices, resulting in persistence in ecosystems and bioaccumulation in organisms. Understanding the environmental behavior of NPs poses a significant challenge due to their nanoscale size. Given the current environmental releases of NPs, known negative consequences, and the limited knowledge available for risk management, comprehending the toxicity of NPs in ecosystems is both awaiting and crucial. The present review aims to unravel the potential environmental influences of nano-scaled materials, and provides in-depth inferences of the current knowledge and understanding in this field. The review comprehensively summarizes the sources, fate, transport, toxicity, health risks, and remediation solutions associated with NP pollution in aquatic and soil ecosystems. Furthermore, it addresses the knowledge gaps and outlines further investigation priorities for the sustainable control of NP pollution in these environments. By gaining a holistic understanding of these aspects, we can work toward ensuring the responsible and sustainable use of NPs in today's fast-growing world.
Collapse
Affiliation(s)
- Thien-Khanh Tran
- Advanced Applied Sciences Research Group, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam; Faculty of Technology, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Tuan-Dung Hoang
- School of Chemistry and Life Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi 100000, Viet Nam; Vietnam National University, Hanoi, VNU Town, Hoa Lac, Thach That District, Hanoi 155500, Viet Nam
| | - Thanh-Cong Nguyen
- Faculty of Technology, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam
| | - Aasif Mohmad Lone
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Akhil Pradiprao Khedulkar
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Mohamed S Gaballah
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, India
| | - W Jin Chung
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
2
|
Karthick Raja Namasivayam S, Francis AL, Kavisri M, Alharbi NS, Thiruvengadam M, Moovendhan M. Biocompatible nanoscale silica particles fabricated from aminopropyltriethoxysilane functionalized brick ash induced versatile pesticidal activity. ENVIRONMENTAL RESEARCH 2023; 238:117090. [PMID: 37683791 DOI: 10.1016/j.envres.2023.117090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
The present study is aimed to evaluate pesticidal activity and biocompatibility including ecotoxicity of functionalized silica nanoparticles that synthesized by simple, in vitro, green technology principles. Sol-gel method was adopted for the synthesis of silica nanoparticles and was functionalized by Aminopropyltriethoxysilane (APS), characterized and confirmed the uniform, monodispersive, highly stable particles with the size range of 10-200 nm. The synthesized Nano silica was screened against the developmental stages of Spodoptera litura. Pesticidal study revealed that the functionalized nanoparticles were effective against all the life stages of the insect by recording high mortality and the drastic reduction in the larval, pupae, adult emergence, and adult longevity stages. The ecotoxic effect of synthesized nano-silica was tested on soil parameters, growth parameters of Arachis hypogaea, and compatibility with Trichoderma viride. This study revealed there was no toxic effect on soil, growth parameters of Arachis hypogaea, and most significantly the growth of Trichoderma viride was not inhibited. A biocompatibility study was done by using Zebrafish and Rabbit model. The study divulges there was no toxic effect on all the developmental stages of the Embryo. Further, the nanoparticles did not exhibit any dermatotoxicological effect which confirmed no signs and symptoms of inflammation. Nano-silica emerges as a promising eco-friendly and non-toxic substitute for conventional insecticides. Its utilization has the potential to augment both environmental preservation and economic prosperity on a national scale. Furthermore, the integration of silica-based nanoparticles with biocidal agents demonstrates notable biocompatibility and the capacity to hinder bacterial adhesion.
Collapse
Affiliation(s)
- S Karthick Raja Namasivayam
- Department of Research and Innovation, Saveetha School of Engineering, SIMATS Deemed University, Chennai, 602195, Tamil Nadu, India
| | - A L Francis
- Department of Research and Innovation, Saveetha School of Engineering, SIMATS Deemed University, Chennai, 602195, Tamil Nadu, India
| | - M Kavisri
- Department of Infrastructure Engineering, Saveetha School of Engineering, SIMATS Deemed University, Chennai, 602195, Tamil Nadu, India
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Meivelu Moovendhan
- Centre for Ocean Research, Sathyabama Research Park, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India.
| |
Collapse
|