1
|
Oliveira RD, Araújo C, Almeida-Aguiar C. In Vitro Antimicrobial Potential of Portuguese Propolis Extracts from Gerês against Pathogenic Microorganisms. Antibiotics (Basel) 2024; 13:655. [PMID: 39061337 PMCID: PMC11273468 DOI: 10.3390/antibiotics13070655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of humanity's main health problems today. Despite all the breakthroughs and research over the past few years, the number of microbial illnesses that are resistant to the available antibiotics is increasing at an alarming rate. In this article, we estimated the biomedical potential of Portuguese propolis harvested from the Gerês apiary over five years, evaluating the in vitro antimicrobial effect of five hydroalcoholic extracts prepared from five single propolis samples and of a hydroalcoholic extract obtained from the mixture of all samples. The antimicrobial potential was firstly assessed by determining the minimum inhibitory concentration (MIC) of these extracts against a panel of three Gram-positive (Bacillus subtilis, methicillin-sensitive Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus) and one Gram-negative bacteria (Escherichia coli), as well as two yeasts (Candida albicans and Saccharomyces cerevisiae). As MIC values against each bacterium were consistent across all the evaluated propolis extracts, we decided to further conduct a disk diffusion assay, which included three commercial antibiotics-erythromycin, vancomycin, and amoxicillin/clavulanic acid-for comparison purposes. In addition to displaying a concentration-dependent antibacterial effect, the hydroalcoholic extracts prepared with 70% ethanol exhibited stronger antimicrobial capacity than vancomycin against B. subtilis (% of increase ranged between 26 and 59%) and methicillin-sensitive S. aureus (% of increase ranged between 63 and 77%). Moreover, methicillin-resistant S. aureus (MRSA) showed susceptibility to the activity of the same extracts and resistance to all tested antibiotics. These findings support that propolis from Gerês is a promising natural product with promising antimicrobial activity, representing a very stimulating result considering the actual problem with AMR.
Collapse
Affiliation(s)
- Rafaela Dias Oliveira
- Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Carina Araújo
- Biology Department, University of Minho, 4710-057 Braga, Portugal;
| | - Cristina Almeida-Aguiar
- Biology Department, University of Minho, 4710-057 Braga, Portugal;
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
2
|
Mariana Kustiawan P, Siregar KAAK, Syaifie PH, Zein Muttaqin F, Ibadillah D, Miftah Jauhar M, Djamas N, Mardliyati E, Taufiqu Rochman N. Uncovering the anti-breast cancer activity potential of east Kalimantan propolis by In vitro and bioinformatics analysis. Heliyon 2024; 10:e33636. [PMID: 39071605 PMCID: PMC11283153 DOI: 10.1016/j.heliyon.2024.e33636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Numerous side effects of breast cancer drugs have prompted researchers to explore more into new therapeutic approaches derived from natural substances. In this context, our study focused on uncovering the potential of East Kalimantan propolis from Trigona apicalis for breast cancer treatment including the underlying mechanisms through bioinformatics approached. We conducted integrated in vitro and bioinformatics analysis of network pharmacology, molecular docking, molecular dynamics and MM-GBSA analysis. Initially, in vitro cytotoxic assay demonstrated the anti-breast cancer activity potential of ethanol extract of East Kalimantan propolis, particularly its ethyl acetate fraction, which exhibited similar activity to doxorubicin, as indicated by their IC50 value. This study revealed eight propolis compounds, consisting of flavonoids and phenolic acids, in East Kalimantan propolis. By integrating microarray datasets (GSE29431, GSE36295, and GSE42568) analysis with potential targets derived from propolis compounds, 39 shared target genes were identified. Subsequently, GO and KEGG pathway, protein-protein interaction (PPI) network, core hub genes and gene expression analysis revealed three major targets, namely, PTGS2, CXCL2, and MMP9. Among them, only MMP9 was highly expressed in breast cancer than normal. Moreover, molecular docking revealed the six of propolis compounds which exhibited pronounced binding affinity towards MMP-9, better than marimastat as control drug. Dynamic simulation confirmed the stability of chrysin and quercetin as best compounds. Additionally, MM-GBSA analysis revealed a relative binding energy for chrysin (-25.6403 kcal/mol) that was comparable to marimastat (-27.3827 kcal/mol). In conclusion, this study reveals how East Kalimantan Propolis affect breast cancer and emphasizes MMP9 as a key target for future therapeutics.
Collapse
Affiliation(s)
- Paula Mariana Kustiawan
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, East Kalimantan, 75124, Indonesia
| | - Khalish Arsy Al Khairy Siregar
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, East Kalimantan, 75124, Indonesia
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
| | - Putri Hawa Syaifie
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
| | - Fauzan Zein Muttaqin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Bhakti Kencana, Bandung, Indonesia
| | - Delfritama Ibadillah
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
| | | | - Nailulkamal Djamas
- Research Center for Horticultural and Estate Crops, National Research and Innovation Agency (BRIN), Bogor, 16915, Indonesia
| | - Etik Mardliyati
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Nurul Taufiqu Rochman
- Research Center for Advanced Material, National Research and Innovation Agency (BRIN), PUSPIPTEK, South Tangerang, Banten, 15314, Indonesia
| |
Collapse
|
3
|
Li D, Wang J, Tuo Z, Yoo KH, Yu Q, Miyamoto A, Zhang C, Ye X, Wei W, Wu R, Feng D. Natural products and derivatives in renal, urothelial and testicular cancers: Targeting signaling pathways and therapeutic potential. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155503. [PMID: 38490077 DOI: 10.1016/j.phymed.2024.155503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Natural products have demonstrated significant potential in cancer drug discovery, particularly in renal cancer (RCa), urothelial carcinoma (UC), and testicular cancer (TC). PURPOSE This review aims to examine the effects of natural products on RCa, UC and TC. STUDY DESIGN systematic review METHODS: PubMed and Web of Science databases were retrieved to search studies about the effects of natural products and derivatives on these cancers. Relevant publications in the reference list of enrolled studies were also checked. RESULTS This review highlighted their diverse impacts on key aspects such as cell growth, apoptosis, metastasis, therapy response, and the immune microenvironment. Natural products not only hold promise for novel drug development but also enhance the efficacy of existing chemotherapy and immunotherapy. Importantly, we exert their effects through modulation of critical pathways and target genes, including the PI3K/AKT pathway, NF-κB pathway, STAT pathway and MAPK pathway, among others in RCa, UC, and TC. CONCLUSION These mechanistic insights provide valuable guidance for researchers, facilitating the selection of promising natural products for cancer management and offering potential avenues for further gene regulation studies in the context of cancer treatment.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea
| | - Qingxin Yu
- Department of pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo City, Zhejiang Province, 315211, China
| | - Akira Miyamoto
- Department of Rehabilitation, West Kyushu University, Japan
| | - Chi Zhang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Xing Ye
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China.
| |
Collapse
|
4
|
Ghazy MGM, Hanafy NAN. Targeted therapies for breast and lung cancers by using Propolis loaded albumin protein nanoparticles. Int J Biol Macromol 2024; 260:129338. [PMID: 38232870 DOI: 10.1016/j.ijbiomac.2024.129338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/29/2023] [Accepted: 01/06/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND Cancer is a popular disease among many others that can threaten human life. This is not only because of its invasiveness but also because of its resistance and the highly effective cost of its treatments. Propolis is rich in natural bioactive and polyphenolic compounds that have proven their strong effect on cancer cells such as MCF-7 and A549 cell lines. METHODS Propolis extract was immobilized into the bovine serum albumin (BSA) conjugated to folic acid (FA), to increase control of its delivery and to strengthen its cellular uptake. RESULTS The growth of MCF-7 was significantly decreased by propolis extract and BSA-propolis NPs after their incubation for 48 and 72 h by (54 ± 0.01 %, and 45 ± 0.005 %, P ≤ 0.001) and (20 ± 0.01 % and 10 ± 0.005 %, P ≤ 0.0001), respectively. Similarly, there is a significant inhibition in the growth of A549 obtained after their incubation with (propolis extract and albumin-propolis NPs) for 72 h (15 ± 0.03 % and 5 ± 0.01 %, P ≤ 0.00001). Propolis extract and BSA-propolis NPs exhibited a greater effect on protein expression of MCF-7 and A549, showing significant modulation of caspase-3, cyclin D1, and light chain 3 (LC3II). The result was supported by nuclear fragmentations and activation of acidic/neutral autophagosomes in acridine orange/ethidium bromide (AO/EB) and 4',6-diamidino-2-phenylindole (DAPI) nuclear stains. According to this study, the expression of phospho-GSK3β (Ser9) (p < 0.001) increased significantly in MCF-7 and A549 cells after their exposure to propolis extract and BSA-propolis NPs. CONCLUSION Results support the potency application of propolis and its encapsulation as an alternative therapeutic agent for cancer treatments instead of chemotherapies because of its action on multi-signaling pathways.
Collapse
Affiliation(s)
- Mohamed G M Ghazy
- Department of Bee Research, Plant Protection Research Institute Branch of Sakha, Agricultural Research Center, Giza, Egypt
| | - Nemany A N Hanafy
- Group of Bionanotechnology and Molecular Cell Biology, Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| |
Collapse
|
5
|
Salami F, Mohebbati R, Hosseinian S, Shahraki S, Hossienzadeh H, Khajavi Rad A. Propolis and its therapeutic effects on renal diseases: A review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:383-390. [PMID: 38419887 PMCID: PMC10897566 DOI: 10.22038/ijbms.2024.73081.15880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/08/2023] [Indexed: 03/02/2024]
Abstract
Propolis is produced by bees using a mixture of bees wax and saliva. It contains several bioactive compounds that mainly induce anti-oxidant and anti-inflammatory effects. In this review, we aimed to investigate the effects of propolis on kidney diseases. We used "Kidney", "Disease", "Propolis", "Renal", "Constituent", "Mechanism", "Infection", and other related keywords as the main keywords to search for works published before July 2023 in Google scholar, Scopus, and Pubmed databases. The search terms were selected according to Medical Subject Headings (MeSH). This review showed that propolis affects renal disorders with inflammatory and oxidative etiology due to its bioactive compounds, mainly flavonoids and polyphenols. There have been few studies on the effects of propolis on kidney diseases; nevertheless, the available studies are integrated in this review. Overall, propolis appears to be effective against several renal diseases through influencing mechanisms such as apoptosis, oxidative balance, and inflammation.
Collapse
Affiliation(s)
- Fatemeh Salami
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Mohebbati
- Department of Physiology, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hosseinian
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Shahraki
- Department of Physiology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hossein Hossienzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Khajavi Rad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Caetano AR, Oliveira RD, Celeiro SP, Freitas AS, Cardoso SM, Gonçalves MST, Baltazar F, Almeida-Aguiar C. Phenolic Compounds Contribution to Portuguese Propolis Anti-Melanoma Activity. Molecules 2023; 28:molecules28073107. [PMID: 37049869 PMCID: PMC10096369 DOI: 10.3390/molecules28073107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Melanoma is the deadliest type of skin cancer, with about 61,000 deaths annually worldwide. Late diagnosis increases mortality rates due to melanoma’s capacity to metastasise rapidly and patients’ resistance to the available conventional therapies. Consequently, the interest in natural products as a strategy for drug discovery has been emerging. Propolis, a natural product produced by bees, has several biological properties, including anticancer effects. Propolis from Gerês is one of the most studied Portuguese propolis. Our group has previously demonstrated that an ethanol extract of Gerês propolis collected in 2018 (G18.EE) and its fractions (n-hexane, ethyl acetate, and n-butanol) decrease melanoma cell viability. Out of all the fractions, G18.EE-n-BuOH showed the highest potential as a melanoma pharmacological therapy. Thus, in this work, G18.EE-n-BuOH was fractioned into 17 subfractions whose effect was evaluated in A375 BRAF-mutated melanoma cells. The subfractions with the highest cytotoxic activity were analysed by UPLC-DAD-ESI/MSn in an attempt to understand which phenolic compounds could account for the anti-melanoma activity. The compounds identified are typical of the Gerês propolis, and some of them have already been linked with antitumor effectiveness. These results reaffirm that propolis compounds can be a source of new drugs and the isolation of compounds could allow its use in traditional medicine.
Collapse
Affiliation(s)
- Ana Rita Caetano
- Department of Biology, School of Sciences, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Rafaela Dias Oliveira
- Department of Biology, School of Sciences, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Sónia Pires Celeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Sofia Freitas
- Department of Biology, School of Sciences, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M. Sameiro T. Gonçalves
- Centre of Chemistry (CQ/UM), Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Cristina Almeida-Aguiar
- Department of Biology, School of Sciences, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Correspondence: ; Tel.: +351-253-601-513
| |
Collapse
|