1
|
Goon S, Shiu Chen Liu C, Ghosh Dastidar U, Paul B, Mukherjee S, Sarkar HS, Desai M, Jana R, Pal S, Sreedevi NV, Ganguly D, Talukdar A. Exploring the Structural Attributes of Yoda1 for the Development of New-Generation Piezo1 Agonist Yaddle1 as a Vaccine Adjuvant Targeting Optimal T Cell Activation. J Med Chem 2024; 67:8225-8246. [PMID: 38716967 DOI: 10.1021/acs.jmedchem.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Piezo1, a mechano-activated ion channel, has wide-ranging physiological and therapeutic implications, with the ongoing development of specific agonists unveiling cellular responses to mechanical stimuli. In our study, we systematically analyzed the chemical subunits in Piezo1 protein agonist Yoda1 to comprehend the structure-activity relationship and push forward next-generation agonist development. Preliminary screening assays for Piezo1 agonism were performed using the Piezo1-mCherry-transfected HEK293A cell line, keeping Yoda1 as a positive control. We introduce a novel Piezo1 agonist Yaddle1 (34, 0.40 μM), featuring a trifluoromethyl group, with further exploration through in vitro studies and density functional theory calculations, emphasizing its tetrel interactions, to act as an ambidextrous wedge between the domains of Piezo1. In contrast to the poor solubility of the established agonist Yoda1, our results showed that the kinetic solubility of Yaddle1 (26.72 ± 1.8 μM at pH 7.4) is 10-fold better than that of Yoda1 (1.22 ± 0.11 μM at pH 7.4). Yaddle1 (34) induces Ca2+ influx in human CD4+ T cell, suggesting its potential as a vaccine adjuvant for enhanced T cell activation.
Collapse
Affiliation(s)
- Sunny Goon
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - Chinky Shiu Chen Liu
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, WB, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Uddipta Ghosh Dastidar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Barnali Paul
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - Suravi Mukherjee
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, WB, India
| | - Himadri Sekhar Sarkar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - Milie Desai
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, WB, India
| | - Rituparna Jana
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, WB, India
| | - Sourav Pal
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - Namala Venkata Sreedevi
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - Dipyaman Ganguly
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, WB, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Saleki K, Alijanizadeh P, Javanmehr N, Rezaei N. The role of Toll-like receptors in neuropsychiatric disorders: Immunopathology, treatment, and management. Med Res Rev 2024; 44:1267-1325. [PMID: 38226452 DOI: 10.1002/med.22012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/20/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
Neuropsychiatric disorders denote a broad range of illnesses involving neurology and psychiatry. These disorders include depressive disorders, anxiety, schizophrenia, bipolar disorder, attention deficit hyperactivity disorder, autism spectrum disorders, headaches, and epilepsy. In addition to their main neuropathology that lies in the central nervous system (CNS), lately, studies have highlighted the role of immunity and neuroinflammation in neuropsychiatric disorders. Toll-like receptors (TLRs) are innate receptors that act as a bridge between the innate and adaptive immune systems via adaptor proteins (e.g., MYD88) and downstream elements; TLRs are classified into 13 families that are involved in normal function and illnesses of the CNS. TLRs expression affects the course of neuropsychiatric disorders, and is influenced during their pharmacotherapy; For example, the expression of multiple TLRs is normalized during the major depressive disorder pharmacotherapy. Here, the role of TLRs in neuroimmunology, treatment, and management of neuropsychiatric disorders is discussed. We recommend longitudinal studies to comparatively assess the cell-type-specific expression of TLRs during treatment, illness progression, and remission. Also, further research should explore molecular insights into TLRs regulation and related pathways.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Javanmehr
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
3
|
Sarkar D, Chowdhury S, Goon S, Sen A, Dastidar UG, Mondal MA, Chakrabarti P, Talukdar A. Discovery and Development of Quinazolinones and Quinazolinediones for Ameliorating Nonalcoholic Fatty Liver Disease (NAFLD) by Modulating COP1-ATGL Axis. J Med Chem 2023; 66:16728-16761. [PMID: 38100045 DOI: 10.1021/acs.jmedchem.3c01431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
E3 ubiquitin ligase, Constitutive Photomorphogenic 1 (COP1) regulates turnover of Adipose Triglyceride Lipase (ATGL), the rate-limiting lipolytic enzyme. Genetic perturbation in the COP1-ATGL axis disrupts lipid homeostasis, leading to liver steatosis. Using drug development strategies, we herein report quinazolinone and quinazolinedione based modulators for COP1-ATGL axis. Systematic SAR studies and subsequent optimization were performed by incorporating relevant functional groups at the N1, N3, C5, and C6 positions of both scaffolds. Compounds' efficacy was evaluated by multiple biological assays and ADME profiling. The lead compound 86 could increase ATGL protein expression, reduce ATGL ubiquitination and COP1 autoubiquitination, and diminish lipid accumulation in hepatocytes in the nanomolar range. Oral administration of 86 abrogated triglyceride accumulation and resolved fibrosis in preclinical Nonalcoholic Fatty Liver Disease (NAFLD) model. The study thus establishes quinazolinedione as a viable chemotype to therapeutically modulate the activity of COP1 and ATGL in relevant clinical contexts.
Collapse
Affiliation(s)
- Dipayan Sarkar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saheli Chowdhury
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India
| | - Sunny Goon
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
- Department of Chemistry, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Abhishek Sen
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Uddipta Ghosh Dastidar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohabul Alam Mondal
- Department of Chemistry, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Partha Chakrabarti
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Das N, Bhattacharya D, Bandopadhyay P, Dastidar UG, Paul B, Rahaman O, Hoque I, Patra B, Ganguly D, Talukdar A. Mitigating hERG Liability of Toll-Like Receptor 9 and 7 Antagonists through Structure-Based Design. ChemMedChem 2023; 18:e202300069. [PMID: 36999630 DOI: 10.1002/cmdc.202300069] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/01/2023]
Abstract
hERG is considered to be a primary anti-target in the drug development process, as the K+ channel encoded by hERG plays an important role in cardiac re-polarization. It is desirable to address the hERG safety liability during early-stage development to avoid the expenses of validating leads that will eventually fail at a later stage. We have previously reported the development of highly potent quinazoline-based TLR7 and TLR9 antagonists for possible application against autoimmune disease. Initial experimental hERG assessment showed that most of the lead TLR7 and TLR9 antagonists suffer from hERG liability rendering them ineffective for further development. The present study herein describes a coordinated strategy to integrate the understanding from structure-based protein-ligand interaction to develop non- hERG binders with IC50 >30 μM with retention of TLR7/9 antagonism through a single point change in the scaffold. This structure-guided strategy can serve as a prototype for abolishing hERG liability during lead optimization.
Collapse
Affiliation(s)
- Nirmal Das
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Debomita Bhattacharya
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
| | - Purbita Bandopadhyay
- IICB-Translational Research Unit of Excellence Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology Salt Lake, Kolkata, 700091, WB, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Uddipta Ghosh Dastidar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Barnali Paul
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Oindrila Rahaman
- IICB-Translational Research Unit of Excellence Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology Salt Lake, Kolkata, 700091, WB, India
| | - Israful Hoque
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
| | - Binita Patra
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
| | - Dipyaman Ganguly
- IICB-Translational Research Unit of Excellence Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology Salt Lake, Kolkata, 700091, WB, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
5
|
Das N, Bandopadhyay P, Roy S, Sinha BP, Dastidar UG, Rahaman O, Pal S, Ganguly D, Talukdar A. Development, Optimization, and In Vivo Validation of New Imidazopyridine Chemotypes as Dual TLR7/TLR9 Antagonists through Activity-Directed Sequential Incorporation of Relevant Structural Subunits. J Med Chem 2022; 65:11607-11632. [PMID: 35959635 DOI: 10.1021/acs.jmedchem.2c00386] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Undesirable activation of endosomal toll-like receptors TLR7 and TLR9 present in specific immune cells in response to host-derived ligands is implicated in several autoimmune diseases and other contexts of autoreactive inflammation, making them important therapeutic targets. We report a drug development strategy identifying a new chemotype for incorporating relevant structural subunits into the basic imidazopyridine core deemed necessary for potent TLR7 and TLR9 dual antagonism. We established minimal pharmacophoric features in the core followed by hit-to-lead optimization, guided by in vitro and in vivo biological assays and ADME. A ligand-receptor binding hypothesis was proposed, and selectivity studies against TLR8 were performed. Oral absorption and efficacy of lead candidate 42 were established through favorable in vitro pharmacokinetics and in vivo pharmacodynamic studies, with IC50 values of 0.04 and 0.47 μM against TLR9 and TLR7, respectively. The study establishes imidazopyridine as a viable chemotype to therapeutically target TLR9 and TLR7 in relevant clinical contexts.
Collapse
Affiliation(s)
- Nirmal Das
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Purbita Bandopadhyay
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, West Bengal, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Swarnali Roy
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Bishnu Prasad Sinha
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, West Bengal, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Uddipta Ghosh Dastidar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Oindrila Rahaman
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, West Bengal, India
| | - Sourav Pal
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Dipyaman Ganguly
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, West Bengal, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|