1
|
Zhang ZJ, Hu WJ, Yu AQ, Wu LH, Yang DQ, Kuang HX, Wang M. Review of polysaccharides from Chrysanthemum morifolium Ramat.: Extraction, purification, structural characteristics, health benefits, structural-activity relationships and applications. Int J Biol Macromol 2024; 278:134919. [PMID: 39179070 DOI: 10.1016/j.ijbiomac.2024.134919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Chrysanthemum morifolium Ramat. (C. morifolium), as a traditional ornamental plant, it has multiple values, including edible, economic, nutritional and even medicinal values, which is used as herbal medicine and a new food resource in the world. Polysaccharides are one of the main bioactive components in C. morifolium, which have various health benefits such as improving functional constipation, improving colitis, anti-glycosylation, antioxidant, anti-angiogenesis, immunomodulation, prebiotic, and α-glucosidase inhibitory activities. This paper describes the extraction, purification, structural characteristics, health benefits, structural-activity relationships, applications, and analyses the shortcomings of the major relevant studies exist on C. morifolium polysaccharides. In addition, the potential mechanisms of the health benefits of C. morifolium polysaccharides were summarized. This study can provide reference and direction for further research and development of C. morifolium polysaccharides.
Collapse
Affiliation(s)
- Zhao-Jiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Wen-Jing Hu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Ai-Qi Yu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Li-Hong Wu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - De-Qiang Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
2
|
Dong W, Li Y, Xue S, Wen F, Meng D, Zhang Y, Yang R. Yeast polysaccharides: The environmentally friendly polysaccharides with broad application potentials. Compr Rev Food Sci Food Saf 2024; 23:e70003. [PMID: 39223755 DOI: 10.1111/1541-4337.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Yeast cell wall (YCW) polysaccharides, including β-glucans, mannans, chitins, and glycogens, can be extracted from the waste of beer industry. They are environmentally friendly, abundant, inexpensive raw materials, and have shown broad biological activities and application potentials. The exploitation of yeast polysaccharides is of great importance for environmental protection and resource utilization. This paper reviews the structural features and preparation of YCW polysaccharides. The solubility and emulsification of yeast polysaccharides and the properties of binding metal ions are presented. In addition, biological activities such as blood glucose and lipid lowering, immune regulation, antioxidant, promotion of intestinal health, and promotion of wound healing are proposed, highlighting the beneficial effects of yeast polysaccharides on human health. Through modification, the physical and chemical properties of yeast polysaccharides are changed, which emphasizes the promotion of their biological activities and properties. In addition, the food applications of yeast polysaccharides, including the food packaging film, emulsifier, thickening agent, and fat alternatives, are focused and discussed.
Collapse
Affiliation(s)
- Wenjing Dong
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Yichen Li
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Shurong Xue
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Fengge Wen
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
3
|
Arslan NP, Dawar P, Albayrak S, Doymus M, Azad F, Esim N, Taskin M. Fungi-derived natural antioxidants. Crit Rev Food Sci Nutr 2023:1-24. [PMID: 38156661 DOI: 10.1080/10408398.2023.2298770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
In humans, exogenous antioxidants aid the endogenous antioxidant system to detoxify excess ROS generated during oxidative stress, thereby protecting the body against various diseases and stressful conditions. The majority of natural antioxidants available on the consumer market are plant-based; however, fungi are being recognized as alternative sources of various natural antioxidants such as polysaccharides, pigments, peptides, sterols, phenolics, alkaloids, and flavonoids. In addition, some exogenous antioxidants are exclusively found in fungi. Fungi-derived antioxidants exhibit scavenging activities against DPPH, ABTS, hydroxyl, superoxide, hydrogen peroxide, and nitric oxide radicals in vitro. Furthermore, in vivo models, application of fungal-derived antioxidants increase the level of various antioxidant enzymes, such as catalases, superoxide dismutases, and glutathione peroxidases, and reduce the level of malondialdehyde. Therefore, fungi-derived antioxidants have potential to be used in the food, cosmetic, and pharmaceutical industries. This review summarizes the antioxidant potential of different fungi (mushrooms, yeasts, and molds)-derived natural compounds such as polysaccharides, pigments, peptides, ergothioneine, ergosterol, phenolics, alkaloids, etc.
Collapse
Affiliation(s)
| | - Pranav Dawar
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Seyda Albayrak
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| | - Meryem Doymus
- Vocational School of Health Services of Hinis, Ataturk University, Erzurum, Turkey
| | - Fakhrul Azad
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Nevzat Esim
- Department of Molecular Biology and Genetics, Science and Art Faculty, Bingol University, Bingol, Turkey
| | - Mesut Taskin
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
4
|
Kono H, Hara H, Iijima K, Fujita S, Kondo N, Hirabayashi K, Isono T, Ogata M. Preparation and characterization of carboxymethylated Aureobasidium pullulans β-(1 → 3, 1 → 6)-glucan and its in vitro antioxidant activity. Carbohydr Polym 2023; 322:121357. [PMID: 37839833 DOI: 10.1016/j.carbpol.2023.121357] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/12/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023]
Abstract
Aureobasidium pullulans β-(1 → 3, 1 → 6)-glucan (APG) has a high degree of β-(1 → 6)-glucosyl branching and a regular triple helical structure similar to that of schizophyllan. In this study, APG was carboxymethylated to different degrees of substitution (DS = 0.51, 1.0, and 2.0, denoted CMAPG 1-3, respectively) using a heterogeneous reaction. With increasing DS, the triple-helix structure drastically decreased and converted to a random coil structure in CMAPG 3. Further, aqueous solutions of CMAPG changed from pseudoplastic fluids to perfect Newtonian liquids with increasing DS, indicating that the intra- and intermolecular hydrogen bonds had been cleaved by the substituents to form a random coil structure. In addition, APG and CMAPG solutions exhibited scavenging ability against hydroxyl, organic, and sulfate radicals. It was also found that the carboxymethylation of APG drastically enhanced the organic radical scavenging ability. On the basis of the relationship between the DS and radical scavenging ability of the CMAPG samples, we believe hydroxyl and organic radicals were preferably scavenged by the donation of hydrogen atoms from the glucose rings and the methylene moieties of the carboxymethyl groups, respectively. Considering the obtained results, CMAPG and APG are expected to have applications in pharmaceuticals, functional foods, and cosmetics as antioxidant polysaccharides.
Collapse
Affiliation(s)
- Hiroyuki Kono
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai, Hokkaido 059 1275, Japan.
| | - Hideyuki Hara
- Bruker Japan K. K., Moriya-cho 3-9, Kanagawa-ku, Yokohama, Kanagawa 221 0022, Japan
| | - Kokoro Iijima
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai, Hokkaido 059 1275, Japan
| | - Sayaka Fujita
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai, Hokkaido 059 1275, Japan
| | - Nobuhiro Kondo
- Itochu Sugar Co. Ltd, Tamatsuura 3, Hekinan, Aichi 447 8506, Japan; WELLNEO SUGAR Co., Ltd., 14-1 Nihonbashi-Koamicho, Chuo-ku, Tokyo 103 8536, Japan
| | - Katsuki Hirabayashi
- Itochu Sugar Co. Ltd, Tamatsuura 3, Hekinan, Aichi 447 8506, Japan; WELLNEO SUGAR Co., Ltd., 14-1 Nihonbashi-Koamicho, Chuo-ku, Tokyo 103 8536, Japan
| | - Takuya Isono
- Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo, Hokkaido 060 8628, Japan
| | - Makoto Ogata
- Faculty of Food and Agricultural Sciences, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima 960 1296, Japan
| |
Collapse
|
5
|
Zhang X, Gong J, Huang W, Liu W, Ma C, Liang R, Chen Y, Xie Z, Li P, Liao Q. Structural Analysis and Antioxidant and Immunoregulatory Activities of an Exopolysaccharide Isolated from Bifidobacterium longum subsp. longum XZ01. Molecules 2023; 28:7448. [PMID: 37959867 PMCID: PMC10649592 DOI: 10.3390/molecules28217448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Bifidobacterium longum subsp. longum XZ01 (BLSL1) is a new strain (isolated from the intestines of healthy people and deposited with the preservation number GDMCC 61618). An exopolysaccharide, S-EPS-1, was successfully isolated from the strain and then systematically investigated for the first time. Some structural features of S-EPS-1 were analyzed by chemical component, HPLC, ultraviolet, infrared, and nuclear magnetic resonance spectrum analyses. These analyses revealed that S-EPS-1 is a neutral heteropolysaccharide with an α-configuration. It contains mainly mannose and glucose, as well as small amounts of rhamnose and galactose. The molecular weight of S-EPS-1 was calculated to be 638 kDa. Several immunoregulatory activity assays indicated that S-EPS-1 could increase proliferation, phagocytosis, and NO production in vitro. In addition, S-EPS-1 could upregulate the expression of cytokines at the mRNA level through TLR4-mediated activation of the NF-κB signaling pathway in RAW 264.7 cells. Finally, S-EPS-1 was demonstrated to exhibit antioxidant activity by ABTS+• scavenging, DPPH• scavenging, and ferric-ion reducing power assays. Furthermore, S-EPS-1 can protect cells from oxidative stress and shows no cytotoxicity. These beneficial effects can be partly attributed to its antioxidant ability. Thus, the antioxidant S-EPS-1 may be applied as a functional food in the future.
Collapse
Affiliation(s)
- Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (X.Z.); (J.G.); (W.H.); (R.L.); (Y.C.)
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (X.Z.); (J.G.); (W.H.); (R.L.); (Y.C.)
| | - Wenyi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (X.Z.); (J.G.); (W.H.); (R.L.); (Y.C.)
| | - Wen Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518106, China; (W.L.); (C.M.); (Z.X.)
| | - Chong Ma
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518106, China; (W.L.); (C.M.); (Z.X.)
| | - Rongyao Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (X.Z.); (J.G.); (W.H.); (R.L.); (Y.C.)
| | - Ye Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (X.Z.); (J.G.); (W.H.); (R.L.); (Y.C.)
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518106, China; (W.L.); (C.M.); (Z.X.)
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (X.Z.); (J.G.); (W.H.); (R.L.); (Y.C.)
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (X.Z.); (J.G.); (W.H.); (R.L.); (Y.C.)
| |
Collapse
|
6
|
Schiavone M, François JM, Zerbib D, Capp JP. Emerging relevance of cell wall components from non-conventional yeasts as functional ingredients for the food and feed industry. Curr Res Food Sci 2023; 7:100603. [PMID: 37840697 PMCID: PMC10568300 DOI: 10.1016/j.crfs.2023.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
Non-conventional yeast species, or non-Saccharomyces yeasts, are increasingly recognized for their involvement in fermented foods. Many of them exhibit probiotic characteristics that are mainly due to direct contacts with other cell types through various molecular components of their cell wall. The biochemical composition and/or the molecular structure of the cell wall components are currently considered the primary determinant of their probiotic properties. Here we first present the techniques that are used to extract and analyze the cell wall components of food industry-related non-Saccharomyces yeasts. We then review the current understanding of the cell wall composition and structure of each polysaccharide from these yeasts. Finally, the data exploring the potential beneficial role of their cell wall components, which could be a source of innovative functional ingredients, are discussed. Such research would allow the development of high value-added products and provide the food industry with novel inputs beyond the well-established S. cerevisiae.
Collapse
Affiliation(s)
- Marion Schiavone
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Lallemand SAS, Blagnac, France
| | - Jean M. François
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Toulouse White Biotechnology (TWB), UMS INRAE/INSA/CNRS, Toulouse, France
| | - Didier Zerbib
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
7
|
Tian H, Ma Z, Yang H, Wang Y, Ren H, Zhao P, Fan W, Tian Y, Wang Y, Wang R. Fermentation of Persimmon Leaves Extract by Lactiplantibacillus plantarum and Saccharomyces cerevisiae. Mol Biotechnol 2023:10.1007/s12033-023-00859-z. [PMID: 37713067 DOI: 10.1007/s12033-023-00859-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Persimmon leaves usually as agricultural and forestry waste were fermented by Lactiplantibacillus plantarum and Saccharomyces cerevisiae. Growth and metabolic performances of L. plantarum and S. cerevisiae, as well as the effect of fermentation on the antioxidant abilities of the extract was investigated, including the content of flavonoids, 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical clearance rates. Growth of L. plantarum was limited, even though the acid production was sustainable, while S. cerevisiae was more suitable to inhabit in the persimmon leaves extract. A symbiotic relationship was observed between the two microbes, reflected in aspects of growth of S. cerevisiae, pH reduction, and ethanol production. The DPPH radical clearance rates of all groups decreased at the early period, and increased later. The co-culture group reached the second highest value of DPPH radical clearance rate only next to the single group of L. plantarum at 9 h. All groups showed an overall downward trend of the hydroxyl radical clearance rates during the 9 h-fermentation. These findings highlight the promising industrial application of fermentation of the plant-based materials with Lactiplantibacillus and Saccharomyces species to improve the biological properties.
Collapse
Affiliation(s)
- Hui Tian
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China
| | - Zhuo Ma
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China
| | - Hui Yang
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China
| | - Yan Wang
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China
| | - Haiwei Ren
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China.
| | - Ping Zhao
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China
| | - Wenguang Fan
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China.
| | - Yaqin Tian
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China
| | - Yonggang Wang
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China
| | - Ruiyun Wang
- Gansu Qimu Dairy Co., Ltd (Jiuquan Iron and Steel Group), Jiayuguan, 735100, Gansu, People's Republic of China
| |
Collapse
|
8
|
Tripetch P, Lekhavat S, Devahastin S, Chiewchan N, Borompichaichartkul C. Antioxidant Activities of Konjac Glucomannan Hydrolysates of Different Molecular Weights at Different Values of pH. Foods 2023; 12:3406. [PMID: 37761115 PMCID: PMC10529667 DOI: 10.3390/foods12183406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Konjac glucomannan (KGM) is a high-molecular-weight polysaccharide that was originally extracted from the corms (underground storage organs) of Amorphophallus konjac. KGM and its oligomers have been reported as dietary fibers that exhibit an array of health benefits. The depolymerization of KGM via enzymatic hydrolysis at different conditions gives products of low viscosity and can be used for coating materials in microencapsulation. In the present study, konjac glucomannan hydrolysates (KGMHs) were produced by enzymatic hydrolysis using commercial mannanase at pH 4.5 at 70 °C for 5-120 min, then KGMHs' molecular weight (Mw), Degree of Polymerization (DP) and their bioactivities were determined. A longer hydrolysis time resulted in KGMH of a lower DP. Oligoglucomannans (Mw < 10,000) could be obtained after hydrolysis for 20 min. The DP of KGMH rapidly decreased during an early stage of the hydrolysis (first 40 min); DP reached around 7 at the end of the hydrolysis. Antioxidant activities were determined by the DPPH radical scavenging and FRAP assays of KGMHs prepared at pH 4.5 and evaluated at pH 2.0-8.0 depending on pH. KGMH having lower Mw exhibited higher antioxidant activities. KGMHs having the smallest molecular weight (Mw = 419) exhibited the highest DPPH radical scavenging activity. Mw and pH have a greater impact on KGMHs' bioactivities which can be useful information for KGMHs as functional ingredients.
Collapse
Affiliation(s)
- Phattanit Tripetch
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand;
| | - Supaporn Lekhavat
- Thailand Institute of Scientific and Technological Research, 35 Mu 3 Technopolis, Khlong Ha, Khlong Luang, Pathum Thani 12120, Thailand;
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha U-Tid Road, Tungkru, Bangkok 10140, Thailand; (S.D.); (N.C.)
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok 10300, Thailand
| | - Naphaporn Chiewchan
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha U-Tid Road, Tungkru, Bangkok 10140, Thailand; (S.D.); (N.C.)
| | - Chaleeda Borompichaichartkul
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand;
| |
Collapse
|
9
|
Yan B, Deng J, Gu J, Tao Y, Huang C, Lai C, Yong Q. Comparison of structure and neuroprotective ability of low molecular weight galactomannans from Sesbania cannabina obtained by different extraction technologies. Food Chem 2023; 427:136642. [PMID: 37364317 DOI: 10.1016/j.foodchem.2023.136642] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
Low-molecular-weight-galactomannan (LMW-GM) is an edible polysaccharide with various biological activities. However, it is used in the field of neuroprotection. In this study, two types of LMW-GMs from Sesbania cannabina were obtained by gluconic acid extraction (GA-LMW-GM) and enzymatic hydrolysis (GMOS). The structure of GA-LMW-GM and GMOS were identified using different nuclear magnetic resonance (NMR) techniques. The antioxidant and neuroprotective activities of GA-LMW-GM and GMOS were evaluated in vitro/vivo. The results showed that both GA-LMW-GM and GMOS possess good free radicals scavenging ability in vitro with IC50 values of 1.9 mg/mL and 4.9 mg/mL for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals 2.8 mg/mL and 4.4 mg/mL for O2•- radicals, respectively. However, GA-LMW-GM was more effective at scavenging reactive oxygen species (ROS) in vivo and protecting the fundamental growth (with a recovery capability of 62.5%) and locomotor functions (with recovery capability of 193.7%) of zebrafish with neurological damage induced by Bisphenol AF.
Collapse
Affiliation(s)
- Bowen Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Junping Deng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yuheng Tao
- School of Pharmacy, School of Biology and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
10
|
Faustino M, Durão J, Pereira CF, Oliveira AS, Pereira JO, Pereira AM, Ferreira C, Pintado ME, Carvalho AP. Comparative Analysis of Mannans Extraction Processes from Spent Yeast Saccharomyces cerevisiae. Foods 2022; 11:foods11233753. [PMID: 36496561 PMCID: PMC9739389 DOI: 10.3390/foods11233753] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Mannans are outstanding polysaccharides that have gained exponential interest over the years. These polysaccharides may be extracted from the cell wall of Saccharomyces cerevisiae, and recovered from the brewing or synthetic biology industries, among others. In this work, several extraction processes-physical, chemical and enzymatic-were studied, all aiming to obtain mannans from spent yeast S. cerevisiae. Their performance was evaluated in terms of yield, mannose content and cost. The resultant extracts were characterized in terms of their structure (FT-IR, PXRD and SEM), physicochemical properties (color, molecular weight distribution, sugars, protein, ash and water content) and thermal stability (DSC). The biological properties were assessed through the screening of prebiotic activity in Lactobacillus plantarum and Bifidobacterium animalis. The highest yield (58.82%) was achieved by using an alkaline thermal process, though the correspondent mannose content was low. The extract obtained by autolysis followed by a hydrothermal step resulted in the highest mannose content (59.19%). On the other hand, the extract obtained through the enzymatic hydrolysis displayed the highest prebiotic activity. This comparative study is expected to lay the scientific foundation for the obtention of well-characterized mannans from yeast, which will pave the way for their application in various fields.
Collapse
Affiliation(s)
- Margarida Faustino
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Joana Durão
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
- Correspondence: (J.D.); (C.F.P.)
| | - Carla F. Pereira
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Correspondence: (J.D.); (C.F.P.)
| | - Ana Sofia Oliveira
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Joana Odila Pereira
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Ana M. Pereira
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Carlos Ferreira
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Manuela E. Pintado
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana P. Carvalho
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|