1
|
Liu Q, Zhang D, Gao S, Cai X, Yao M, Xu Y, Gong Y, Zheng K, Mao Y, Yang L, Yang D, Molnár I, Yang X. Didepside Formation by the Nonreducing Polyketide Synthase Preu6 of Preussia isomera Requires Interaction of Starter Acyl Transferase and Thioesterase Domains. Angew Chem Int Ed Engl 2023; 62:e202214379. [PMID: 36484777 DOI: 10.1002/anie.202214379] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/13/2022]
Abstract
Orsellinic acid (OA) derivatives are produced by filamentous fungi using nonreducing polyketide synthases (nrPKSs). The chain-releasing thioesterase (TE) domains of such nrPKSs were proposed to also catalyze dimerization to yield didepsides, such as lecanoric acid. Here, we use combinatorial domain exchanges, domain dissections and reconstitutions to reveal that the TE domain of the lecanoric acid synthase Preu6 of Preussia isomera must collaborate with the starter acyl transferase (SAT) domain from the same nrPKS. We show that artificial SAT-TE fusion proteins are highly effective catalysts and reprogram the ketide homologation chassis to form didepsides. We also demonstrate that dissected SAT and TE domains of Preu6 physically interact, and SAT and TE domains of OA-synthesizing nrPKSs may co-evolve. Our work highlights an unexpected domain-domain interaction in nrPKSs that must be considered for the combinatorial biosynthesis of unnatural didepsides, depsidones, and diphenyl ethers.
Collapse
Affiliation(s)
- Qingpei Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Dan Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Shuaibiao Gao
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Xianhua Cai
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Ming Yao
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Yao Xu
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Yifu Gong
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Ke Zheng
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Yigui Mao
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Liyan Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, No.98 Daling Road, Nanning, 530007, P. R. China
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, No.98 Daling Road, Nanning, 530007, P. R. China
| | - István Molnár
- VTT Technical Research Centre of Finland, Division of Industrial Biotechnology and Food Solutions, Tietotie 2, Espoo, 02150, Finland
| | - Xiaolong Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| |
Collapse
|
2
|
Adelusi OA, Gbashi S, Adebiyi JA, Makhuvele R, Adebo OA, Aasa AO, Targuma S, Kah G, Njobeh PB. Variability in metabolites produced by Talaromyces pinophilus SPJ22 cultured on different substrates. Fungal Biol Biotechnol 2022; 9:15. [PMID: 36307838 PMCID: PMC9617411 DOI: 10.1186/s40694-022-00145-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/07/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Several metabolites released by fungal species are an essential source of biologically active natural substances. Gas chromatography high resolution time-of-flight mass spectrometry (GC-HRTOF-MS) is one of the techniques used in profiling the metabolites produced by microorganisms, including Talaromyces pinophilus. However, there is limited information regarding differential substrates' impacts on this fungal strain's metabolite profiling. This study examined the metabolite profile of T. pinophilus strain SPJ22 cultured on three different media, including solid czapek yeast extract agar (CYA), malt extract agar (MEA) and potato dextrose agar (PDA) using GC-HRTOF-MS. The mycelia including the media were plugged and dissolved in 5 different organic solvents with varying polarities viz.: acetonitrile, dichloromethane, hexane, 80% methanol and water, and extracts analysed on GC-HRTOF-MS. RESULTS The study revealed the presence of different classes of metabolites, such as fatty acids (2.13%), amides (4.26%), alkanes (34.04%), furan (2.13%), ketones (4.26%), alcohols (14.89%), aromatic compounds (6.38%), and other miscellaneous compounds (17.02%). Significant metabolites such as acetic acid, 9-octadecenamide, undecanoic acid methyl ester, hydrazine, hexadecane, nonadecane, eicosane, and other compounds reported in this study have been widely documented to have plant growth promoting, antimicrobial, anti-inflammatory, antioxidant, and biofuel properties. Furthermore, T. pinophilus grown on PDA and MEA produced more than twice as many compounds as that grown on CYA. CONCLUSION Thus, our result showed that the production of essential metabolites from T. pinophilus is substrate dependent, with many of these metabolites known to have beneficial characteristics, and as such, this organism can be utilised as a sustainable and natural source for these useful organic molecules.
Collapse
Affiliation(s)
- Oluwasola Abayomi Adelusi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| | - Sefater Gbashi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| | - Janet Adeyinka Adebiyi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| | - Rhulani Makhuvele
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| | - Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| | - Adeola Oluwakemi Aasa
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| | - Sarem Targuma
- Department of Chemistry, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| | - Glory Kah
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| | - Patrick Berka Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| |
Collapse
|