1
|
da Costa PCT, Santos TLB, Ramos JF, Santos JAM, de Medeiros FD, Freitas JCR, de Oliveira WA. Synthesis and antifungal evaluation against Candida spp. of the (E)-3-(furan-2-yl)acrylic acid. Braz J Microbiol 2024; 55:133-142. [PMID: 37995041 PMCID: PMC10920609 DOI: 10.1007/s42770-023-01158-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/16/2023] [Indexed: 11/24/2023] Open
Abstract
Infections of fungal origin are mainly caused by Candida spp. Some species, such as C. albicans, C. glabrata, C. parapsilosis, and C. tropicalis, stand out as promoters of diseases in humans. This study evaluated the synthesis and antifungal effects of (E)-3-(furan-2-yl)acrylic acid. The synthesis of the compound showed a yield of 88%, considered high. The minimum inhibitory concentration of the synthetic compound, amphotericin B, and fluconazole isolated against four Candida species ranged from 64 to 512 μg/mL, 1 to 2 μg/mL, and 32 to 256 μg/mL, respectively. The synergistic effect of the test compound was observed when associated with amphotericin B against C. albicans and C. tropicalis, with no antagonism between the substances against any of the strains tested. The potential drug promoted morphological changes in C. albicans, decreasing the amount of resistance and virulence, and reproduction structures, such as the formation of pseudohyphae, blastoconidia, and chlamydospores. Furthermore, it was also possible to identify the fungistatic profile of the test substance by studying the growth kinetics of C. albicans. Finally, it was observed that the test compound stimulated ergosterol biosynthesis by the yeast, probably by activating microbial resistance responses.
Collapse
Affiliation(s)
| | - Thales Luciano Bezerra Santos
- Education and Health Center, Professora Maria Anita Furtado Coelho, Bairro Sítio Olho D'água da Bica, Federal University of Campina Grande, Cuité, PB, 58175-000, Brazil
| | - Jaqueline Ferreira Ramos
- Department of Chemistry, Federal Rural University of Pernambuco, Dom Manoel de Medeiros, Recife, PE, 52171-900, Brazil
| | - Jonh Anderson Macêdo Santos
- Department of Chemistry, Federal Rural University of Pernambuco, Dom Manoel de Medeiros, Recife, PE, 52171-900, Brazil
| | - Francinalva Dantas de Medeiros
- Education and Health Center, Professora Maria Anita Furtado Coelho, Bairro Sítio Olho D'água da Bica, Federal University of Campina Grande, Cuité, PB, 58175-000, Brazil
| | - Juliano Carlo Rufino Freitas
- Education and Health Center, Professora Maria Anita Furtado Coelho, Bairro Sítio Olho D'água da Bica, Federal University of Campina Grande, Cuité, PB, 58175-000, Brazil
- Department of Chemistry, Federal Rural University of Pernambuco, Dom Manoel de Medeiros, Recife, PE, 52171-900, Brazil
| | - Wylly Araújo de Oliveira
- Education and Health Center, Professora Maria Anita Furtado Coelho, Bairro Sítio Olho D'água da Bica, Federal University of Campina Grande, Cuité, PB, 58175-000, Brazil
| |
Collapse
|
2
|
Shershnev IA, Boyarskaya IA, Vasilyev AV. 5,5,5-Trichloropent-3-en-one as a Precursor of 1,3-Bi-centered Electrophile in Reactions with Arenes in Brønsted Superacid CF 3SO 3H. Synthesis of 3-Methyl-1-trichloromethylindenes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196675. [PMID: 36235211 PMCID: PMC9573653 DOI: 10.3390/molecules27196675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022]
Abstract
Reactions of 5,5,5-trichloropent-3-en-2-one Cl3CCH=CHC(=O)Me with arenes in Brønsted superacid CF3SO3H at room temperature for 2 h-5 days afford 3-methyl-1-trichloromethylindenes, a novel class of indene derivatives. The key reactive intermediate, O-protonated form of starting compound Cl3CCH=CHC(=OH+)Me, has been studied experimentally by NMR in CF3SO3H and theoretically by DFT calculations. The reaction proceeds through initial hydroarylation of the carbon-carbon double bond of starting CCl3-enone, followed by cyclization onto the O-protonated carbonyl group, leading to target indenes. In general, 5,5,5-trichloropent-3-en-2-one in CF3SO3H acts as a 1,3-bi-centered electrophile.
Collapse
Affiliation(s)
- Ivan A. Shershnev
- Department of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia
| | - Irina A. Boyarskaya
- Department of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia
| | - Aleksander V. Vasilyev
- Department of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia
- Department of Chemistry, Saint Petersburg State Forest Technical University, Institutsky per., 5, Saint Petersburg 194021, Russia
- Correspondence: or
| |
Collapse
|