1
|
Jing HH, Shati AA, Alfaifi MY, Elbehairi SEI, Sasidharan S. The future of plant based green carbon dots as cancer Nanomedicine: From current progress to future Perspectives and beyond. J Adv Res 2025; 67:133-159. [PMID: 38320729 DOI: 10.1016/j.jare.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The emergence of carbon dots (CDs) as anticancer agents had sparked a transformation in cancer research and treatment strategies. These fluorescent CDs, initially introduced in the early 2000 s, possess exceptional biocompatibility, tunable fluorescence, and surface modification capabilities, positioning them as promising tools in biomedical applications. AIM OF REVIEW The review encapsulates the transformative trajectory of green CDs as future anticancer nanomedicine, poised to redefine the strategies employed in the ongoing fight against cancer. KEY SCIENTIFIC CONCEPTS OF REVIEW The versatility of CDs was rooted in their various synthesis approaches and sustainable strategies, enabling their adaptability for diverse therapeutic uses. In vitro studies had showcased CDs' selective cytotoxicity against cancer cells while sparing healthy counterparts, forming the basis for targeted therapeutic potential. This selectivity had been attributed to the reactive oxygen species (ROS) generation, which opened avenues for targeted interventions. The role of CDs in combination therapies, synergizing with chemotherapy, radiotherapy, and targeted approaches was then investigated to heighten their anticancer efficacy. Notably, in vivo studies highlight CDs' remarkable biocompatibility and minimal side effects, endorsing their translational promise. Integration with conventional cancer treatments such as chemotherapy, radiotherapy, and immunotherapy amplified the versatility and effectiveness of CDs. The exploration of CDs' applications in photo-induced treatments further solidified their significance, positioning them as photosensitizers (PS) in photodynamic therapy (PDT) and photothermal agents (PA) in photothermal therapy (PTT). In PDT, CDs triggered the generation of ROS upon light exposure, facilitating cancer cell elimination, while in PTT, they induced localized hyperthermia within cancer cells, enhancing therapeutic outcomes. In vitro and in vivo investigations validated CDs' efficacy in PDT and PTT, affirming their potential for integration into combination therapies. Looking ahead, the future of CDs in anticancer treatment encompasses bioavailability, biocompatibility, synergistic treatments, tumor targeting, artificial intelligence (AI) and robotics integration, personalized medicine, and clinical translation. This transformative odyssey of CDs as future anticancer agents is poised to redefine the paradigm of cancer treatment strategies.
Collapse
Affiliation(s)
- Hong Hui Jing
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), Pulau Pinang 11800, Malaysia
| | - Ali A Shati
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia
| | - Mohammad Y Alfaifi
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia
| | - Serag Eldin I Elbehairi
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia; Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Agouza, Giza, Egypt
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), Pulau Pinang 11800, Malaysia.
| |
Collapse
|
2
|
Shang J, Zhou Q, Wang K, Wei Y. Engineering of Green Carbon Dots for Biomedical and Biotechnological Applications. Molecules 2024; 29:4508. [PMID: 39339503 PMCID: PMC11434350 DOI: 10.3390/molecules29184508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Carbon dots (CDs) are attracting increasing research attention due to their exceptional attributes, including their biocompatibility, water solubility, minimal toxicity, high photoluminescence, and easy functionalization. Green CDs, derived from natural sources such as fruits and vegetables, present advantages over conventionally produced CDs, such as cost-effectiveness, stability, simplicity, safety, and environmental friendliness. Various methods, including hydrothermal and microwave treatments, are used to synthesize green CDs, which demonstrate strong biocompatibility, stability, and luminescence. These properties give green CDs versatility in their biological applications, such as bioimaging, biosensing, and drug delivery. This review summarizes the prevalent synthesis methods and renewable sources regarding green CDs; examines their optical features; and explores their extensive biological applications, including in bioimaging, biosensing, drug/gene delivery, antimicrobial and antiviral effects, formatting of mathematical components, cancer diagnosis, and pharmaceutical formulations.
Collapse
Affiliation(s)
| | | | | | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (J.S.); (Q.Z.); (K.W.)
| |
Collapse
|
3
|
Dimitriev O, Kysil D, Zaderko A, Isaieva O, Vasin A, Piryatinski Y, Fahlman M, Nazarov A. Photoluminescence quantum yield of carbon dots: emission due to multiple centers versus excitonic emission. NANOSCALE ADVANCES 2024; 6:2185-2197. [PMID: 38633041 PMCID: PMC11019485 DOI: 10.1039/d4na00033a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
Carbon dots (CDs) are recognized as promising fluorescent nanomaterials with bright emission and large variations of photoluminescence quantum yield (PLQY). However, there is still no unique approach for explanation of mechanisms and recipes for synthetic procedures/chemical composition of CDs responsible for the enhancement of PLQY. Here, we compare photophysical behavior and PLQY of two types of CDs synthesized by different routes, leading to the different extent of oxidation and composition. The first type of CDs represents a conjugated carbon system oxidized by F, N and O heteroatoms, whereas the second type represents a non-conjugated carbon system oxidized by oxygen. Photophysical data, photoemission spectroscopy and microscopy data yield the suggestion that in the first case, a structure with a distinct carbon core and highly oxidized electron-accepting shell is formed. This leads to the excitonic type non-tunable emission with single-exponent decay and high PLQY with a strong dependence on the solvent polarity, being as high as 93% in dioxane and as low as 30% in aqueous medium, but which is vulnerable to photobleaching. In the second case, the oxidized CDs do not indicate a clear core-shell structure and show poor solvatochromism, negligible photobleaching, low PLQY varying in the range of 0.7-2.3% depending on the solvent used, and tunable emission with multi-exponent decay, which can be described by the model of multiple emission centers acting through a clustering-triggered emission mechanism. The obtained results lead to a strategy that allows one to design carbon nanomaterials with principally different PLQYs that differ by orders of magnitude.
Collapse
Affiliation(s)
- Oleg Dimitriev
- V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine Pr. Nauky 41 Kyiv 03028 Ukraine
- Laboratory of Organic Electronics, Linköping University Norrköping 60174 Sweden
- Wallenberg Wood Science Center, Laboratory of Organic Electronics, Linköping University Norrköping 60174 Sweden
| | - Dmytro Kysil
- V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine Pr. Nauky 41 Kyiv 03028 Ukraine
| | - Alexander Zaderko
- Institute of High Technologies, Taras Shevchenko National University Kyiv 01033 Ukraine
| | - Oksana Isaieva
- V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine Pr. Nauky 41 Kyiv 03028 Ukraine
- National University "Kyiv-Mohyla Academy" Skovorody, 2 Kyiv 04070 Ukraine
| | - Andrii Vasin
- V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine Pr. Nauky 41 Kyiv 03028 Ukraine
- National Technical University "Igor Sikorsky Kyiv Polytechnic Institute" 37, Peremohy Ave. Kyiv 03056 Ukraine
| | - Yuri Piryatinski
- Institute of Physics, NAS of Ukraine Pr. Nauki 46 Kyiv 03028 Ukraine
| | - Mats Fahlman
- Laboratory of Organic Electronics, Linköping University Norrköping 60174 Sweden
- Wallenberg Wood Science Center, Laboratory of Organic Electronics, Linköping University Norrköping 60174 Sweden
| | - Alexei Nazarov
- V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine Pr. Nauky 41 Kyiv 03028 Ukraine
- National Technical University "Igor Sikorsky Kyiv Polytechnic Institute" 37, Peremohy Ave. Kyiv 03056 Ukraine
| |
Collapse
|
4
|
Dos Santos de Almeida W, Gomes Abegão LM, Vinicius Silva Alves A, de Oliveira Souza Silva J, Oliveira de Souza S, d'Errico F, Midori Sussuchi E. Carbon Dots based Tissue Equivalent Dosimeter as an Ionizing Radiation Sensor. Chemistry 2024; 30:e202303771. [PMID: 38118132 DOI: 10.1002/chem.202303771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/22/2023]
Abstract
This work explores the potential of carbon dots as a fluorescent probe in the determination of heavy ions and as an electrochemical biosensor. It also discusses how carbon dots can be introduced into the Fricke solution to potentially serve as an ionizing radiation sensor. The study presents a novel tissue equivalent dosimeter carbon dots-based as an ionizing radiation sensor. The methodology for the synthesis of Nitrogen-doped Carbon Dots N-CDs and the characterization of the material are described. The results show that the N-CDs have a high sensitivity to ionizing radiation and can be used as a dosimeter for radiation detection. The study also discusses the limitations and challenges of using carbon dots as a dosimeter for ionizing radiation. Overall, this study provides valuable insights into the potential applications of carbon dots in different fields and highlights the importance of further research in this area.
Collapse
Affiliation(s)
- Wandson Dos Santos de Almeida
- Grupo de Pesquisa em sensores eletroquímicos e Nano(Materiais) - SenM, Laboratório de Corrosão e Nanotecnolodia- LCNT, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas, 304, Rosa Elze - São Cristóvão/SE, CEP 49107230
| | - Luis Miguel Gomes Abegão
- Grupo de Fotônica, Instituto de Física, Universidade Federal de Goiás, Av. Esperança, 1533, Campus, Samambaia, Goiânia/GO, CEP 74690900
| | - Anderson Vinicius Silva Alves
- Programa de Pós-Graduação em Física, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas, 304, Rosa Elze - São Cristóvão/SE, CEP 49107230
| | - Jonatas de Oliveira Souza Silva
- Grupo de Pesquisa em sensores eletroquímicos e Nano(Materiais) - SenM, Laboratório de Corrosão e Nanotecnolodia- LCNT, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas, 304, Rosa Elze - São Cristóvão/SE, CEP 49107230
| | - Susana Oliveira de Souza
- Programa de Pós-Graduação em Física, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas, 304, Rosa Elze - São Cristóvão/SE, CEP 49107230
| | | | - Eliana Midori Sussuchi
- Grupo de Pesquisa em sensores eletroquímicos e Nano(Materiais) - SenM, Laboratório de Corrosão e Nanotecnolodia- LCNT, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas, 304, Rosa Elze - São Cristóvão/SE, CEP 49107230
| |
Collapse
|
5
|
Tai XH, Hung WS, Yang TCK, Lai CW, Lee KM, Chen CY, Juan JC. Fluorinated photoreduced graphene oxide with semi-ionic C-F bonds: An effective carbon based photocatalyst for the removal of volatile organic compounds. CHEMOSPHERE 2024; 349:140890. [PMID: 38072201 DOI: 10.1016/j.chemosphere.2023.140890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
There is much interest in developing metal-free halogenated graphene such as fluorinated graphene for various catalytic applications. In this work, a fluorine-doped graphene oxide photocatalyst was investigated for photocatalytic oxidation (PCO) of a volatile organic compound (VOC), namely gaseous methanol. The fluorination process of graphene oxide (GO) was carried out via a novel and facile solution-based photoirradiation method. The fluorine atoms were doped on the surface of the GO in a semi-ionic C-F bond configuration. This presence of the semi-ionic C-F bonds induced a dramatic 7-fold increment of the hole charge carrier density of the photocatalyst. The fluorinated GO photocatalyst exhibited excellent photodegradation up to 93.5% or 0.493 h-1 according pseudo-first order kinetics for methanol. In addition, 91.7% of methanol was mineralized into harmless carbon dioxide (CO2) under UV-A irradiation. Furthermore, the photocatalyst demonstrated good stability in five cycles of methanol PCO. Besides methanol, other VOCs such as acetone and formaldehyde were also photodegraded. This work reveals the potential of fluorination in producing effective graphene-based photocatalyst for VOC removal.
Collapse
Affiliation(s)
- Xin Hong Tai
- PETRONAS Research Sdn Bhd (PRSB), Jalan Ayer Hitam, Bangi Government and Private Training Centre Area, 43000, Bandar Baru Bangi, Selangor, Malaysia; Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya, Kuala Lumpur, Malaysia
| | - Wei-Song Hung
- Advanced Membrane Materials Research Center, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Thomas Chung Kuang Yang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya, Kuala Lumpur, Malaysia
| | - Kian Mun Lee
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya, Kuala Lumpur, Malaysia
| | - Chia-Yun Chen
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101, Taiwan; Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Joon Ching Juan
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya, Kuala Lumpur, Malaysia; Faculty of Engineering, Technology and Built Environment, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Chen J, Mao C, Ye H, Gao X, Zhao L. Natural biomass carbon Dots-Based fluorescence sensor for high precision detection of vitamin B12 in serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123459. [PMID: 37827002 DOI: 10.1016/j.saa.2023.123459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/05/2023] [Accepted: 09/24/2023] [Indexed: 10/14/2023]
Abstract
Vitamin B12(Vit B12) is an essential micronutrient for body growth, and abnormal levels of Vit B12 in the human body are closely associated with the prediction of certain diseases. Hence, a rapid, sensitive, and environment-friendly approach for Vit B12 detection was set up. Herein, the Bird's nest carbon dots (B-CDs) are synthesized by using a bird's nest and distilled water as precursors. One-step hydrothermal synthesis has created B-CDs without toxic ingredients or surface chemical modifications. The prepared B-CDs exhibited outstanding characteristics including excellent water solubility, brilliant fluorescence performance great biocompatibility, and fine stability in a broad pH range of 3.0-11.0 and high ionic strength solution. The experiment revealed that the fluorescence of the reaction system showed a regular decrease after the interaction of B-CDs with Vit B12. Additionally, there was an excellent linear relationship between the F/F0 of B-CDs and the concentration of Vit B12. The linear range was 0 ∼ 100 µM, R2 was 0.9929, and the detection limit was 0.24 µM. Finally, the proposed method successfully detected Vit B12 in human serum samples with recoveries of 96.2 %-100.3 %, showing broad clinical prospects.
Collapse
Affiliation(s)
- Jueling Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Chunling Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Heng Ye
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xun Gao
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang222001,China.
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
7
|
Cheng H, Zhao Y, Wang Y, Hou Y, Zhang R, Zong M, Sun L, Liu Y, Qi J, Wu X, Li B. The Potential of Novel Synthesized Carbon Dots Derived Resveratrol Using One-Pot Green Method in Accelerating in vivo Wound Healing. Int J Nanomedicine 2023; 18:6813-6828. [PMID: 38026533 PMCID: PMC10664763 DOI: 10.2147/ijn.s434071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Background Carbon dots (CDs), a novel nanomaterial, have gained significant attention over the past decade due to their remarkable fluorescence properties, low toxicity, and biocompatibility. These characteristics make them promising in various applications, especially in biomedicine. However, most CDs are currently synthesized using chemical materials, and their biocompatibility falls short of natural compounds. Research on extracting CDs from natural sources is limited, and their potential in biomedicine remains largely unexplored. Methods We extracted CDs from resveratrol, a natural plant compound, and enhanced their water solubility using citric acid. Characterization of resveratrol-based carbon dots (RES-CDs) was carried out using various techniques, including UV-Vis, SEM, TEM, FTIR, XRD, and fluorescence spectroscopy. Extensive biocompatibility tests, wound healing assays, cell migration studies, and angiogenesis experiments were conducted using human umbilical vein endothelial cells (HUVEC). In addition, we investigated the biocompatibility and wound healing potential of RES-CDs in an in vivo rat model of inflammation. Results RES-CDs exhibited stable yellow-green fluorescence under 365-nanometer ultraviolet light and demonstrated excellent biocompatibility. In wound healing experiments, RES-CDs outperformed resveratrol in terms of cell scratch healing, migration, and tube formation. In a rat skin defect model, RES-CDs promoted wound healing and stimulated the formation of blood vessels and tissue regeneration near the wound site, as evidenced by increased CD31 and VEGF expression. Conclusion Resveratrol-derived CDs with enhanced water solubility show superior performance in tissue healing compared to resveratrol. This discovery opens new possibilities for the clinical application of resveratrol-based carbon dots.
Collapse
Affiliation(s)
- Huaiyi Cheng
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yifan Zhao
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yue Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yuxi Hou
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Ran Zhang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Mingrui Zong
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Lingxiang Sun
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yingyu Liu
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Jin Qi
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Xiuping Wu
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Bing Li
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| |
Collapse
|
8
|
Kang W, Lee A, Tae Y, Lee B, Choi JS. Enhancing catalytic efficiency of carbon dots by modulating their Mn doping and chemical structure with metal salts. RSC Adv 2023; 13:8996-9002. [PMID: 36936848 PMCID: PMC10022490 DOI: 10.1039/d3ra01001e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
Nanozymes are emerging materials in various fields owing to their advantages over natural enzymes, such as controllable and facile synthesis, tunability in catalytic activities, cost-effectiveness, and high stability under stringent conditions. In this study, the effect of metal salts on the formation and catalytic activity of carbon dots (CDs), a promising nanozyme, is demonstrated. By introducing Mn sources that possess different counter anions, the chemical structure and composition of the CDs produced are affected, thereby influencing their enzymatic activities. The synergistic catalytic effect of the Mn and N-doped CDs (Mn&N-CDs) is induced by effective metal doping in the carbogenic domain and a high proportion of graphitic and pyridinic N. This highly enhanced catalytic effect of Mn&N-CDs allows them to respond sensitively to the interference factors of enzymatic reactions. Consequently, ascorbic acid, which is an essential nutrient for maintaining our health and is a reactive oxygen scavenger, can be successfully monitored using color change by forming oxidized 3,3',5,5'-tetramethylbenzidine with H2O2 and Mn&N-CDs. This study provides a basic understanding of the formation of CDs and how their catalytic properties can be controlled by the addition of different metal sources, thereby providing guidelines for the development of CDs for industrial applications.
Collapse
Affiliation(s)
- Wooseok Kang
- Department of Chemical and Biological Engineering, Hanbat National University Daejeon 34158 Korea
| | - Ahyun Lee
- Department of Chemical and Biological Engineering, Hanbat National University Daejeon 34158 Korea
| | - Yoonjin Tae
- Department of Chemical and Biological Engineering, Hanbat National University Daejeon 34158 Korea
| | - Byeongseung Lee
- Department of Chemical and Biological Engineering, Hanbat National University Daejeon 34158 Korea
| | - Jin-Sil Choi
- Department of Chemical and Biological Engineering, Hanbat National University Daejeon 34158 Korea
| |
Collapse
|
9
|
Xing Y, Yang M, Chen X. Fabrication of P and N Co-Doped Carbon Dots for Fe 3+ Detection in Serum and Lysosomal Tracking in Living Cells. BIOSENSORS 2023; 13:230. [PMID: 36831996 PMCID: PMC9954533 DOI: 10.3390/bios13020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Doping with heteroatoms allows the retention of the general characteristics of carbon dots while allowing their physicochemical and photochemical properties to be effectively modulated. In this work, we report the preparation of ultrastable P and N co-doped carbon dots (PNCDs) that can be used for the highly selective detection of Fe3+ and the tracking of lysosomes in living cells. Fluorescent PNCDs were facilely prepared via a hydrothermal treatment of ethylenediamine and phytic acid, and they exhibited a high quantum yield of 22.0%. The strong coordination interaction between the phosphorus groups of PNCDs and Fe3+ rendered them efficient probes for use in selective Fe3+ detection, with a detection limit of 0.39 μM, and we demonstrated their practicability by accurately detecting the Fe3+ contents in bio-samples. At the same time, PNCDs exhibited high lysosomal location specificity in different cell lines due to surface lipophilic amino groups, and real-time tracking of the lysosome morphology in HeLa cells was achieved. The present work suggests that the fabrication of heteroatom-doped CDs might be an effective strategy to provide promising tools for cytology, such as organelle tracking.
Collapse
Affiliation(s)
- Yanzhi Xing
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Mei Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Xuwei Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
10
|
Yu Y, Zhang L, Gao X, Feng Y, Wang H, Lei C, Yan Y, Liu S. Research Progress in the Synthesis of Carbon Dots and Their Application in Food Analysis. BIOSENSORS 2022; 12:1158. [PMID: 36551125 PMCID: PMC9775108 DOI: 10.3390/bios12121158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Food safety is connected to public health, making it crucial to protecting people's health. Food analysis and detection can assure food quality and effectively reduce the entry of harmful foods into the market. Carbon dots (CDs) are an excellent choice for food analysis and detection attributable to their advantages of good optical properties, water solubility, high chemical stability, easy functionalization, excellent bleaching resistance, low toxicity, and good biocompatibility. This paper focuses on the optical properties, synthesis methods, and applications of CDs in food analysis and detection, including the recent advances in food nutritional composition analysis and food quality detection, such as food additives, heavy metal ions, foodborne pathogens, harmful organic pollutants, and pH value. Moreover, this review also discusses the potentially toxic effects, current challenges, and prospects of CDs in basic research and applications. We hope that this review can provide valuable information to lay a foundation for subsequent research on CDs and promote the exploration of CDs-based sensing for future food detection.
Collapse
Affiliation(s)
- Yuan Yu
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Lili Zhang
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xin Gao
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuanmiao Feng
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hongyuan Wang
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Caihong Lei
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Yanhong Yan
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shuiping Liu
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
11
|
Yi H, Liu J, Yao J, Wang R, Shi W, Lu C. Photoluminescence Mechanism of Carbon Dots: Triggering Multiple Color Emissions through Controlling the Degree of Protonation. Molecules 2022; 27:6517. [PMID: 36235054 PMCID: PMC9571308 DOI: 10.3390/molecules27196517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Carbon dots (CDs) have excellent optical properties, low toxicity and easy preparation, which have led to them being widely used in biomedicine, sensing and optical devices. However, although great progress has been made in the preparation of CDs, the detailed exploration of their photoluminescence (PL) mechanism is still under debate due to their complex structures and surface functionalities. Here, we proposed a single change in the pH of the synthesis condition, which had no effect on the CDs intrinsic core states and avoided the mutual influence of multiple PL origins. The m-phenylenediamine (m-PD) served as a carbon source, whose protonation degree determined the surface state of the resulting CDs and the accompanying fluorescence characteristics. The as-obtained CDs materials can be applied in the chemical sensor and anti-counterfeiting fields in a targeted manner. Therefore, our work not only contributes to the explanation of the CDs PL mechanism, but also obtains a series of CDs materials with controllable PL properties.
Collapse
Affiliation(s)
| | | | | | | | - Wenying Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P.O. Box 98, Beijing 100029, China
| | | |
Collapse
|
12
|
Li Y, Liu C, Chen M, Zheng Y, Tian H, Shi R, He X, Lin X. Preparing Colour-Tunable Tannic Acid-Based Carbon Dots by Changing the pH Value of the Reaction System. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12173062. [PMID: 36080100 PMCID: PMC9457928 DOI: 10.3390/nano12173062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 05/27/2023]
Abstract
Biomass carbon dots (CDs) have the characteristics of being green, nontoxic, inexpensive, and simple to prepare, and they can be used in luminescence-related fields. In this study, red, green, and blue luminescent CDs were synthesised by a simple hydrothermal method under alkaline, neutral, and acidic conditions using TA as carbon source and o-phthalaldehyde as blend. The unique optical properties of these CDs are due to the differences in their degrees of conjugation, which can be controlled by the pH value of the reaction system. These three kinds of biomass CDs have good applications in light-emitting diodes (LEDs). By mixing biomass CDs with epoxy resin, warm, and cold white LEDs with Commission Internationale de l'Elcairage (CIE) coordinates (0.35, 0.36) were successfully constructed on extremely stable multicolour CDs. This study shows that these biomass CDs are a promising material for white LED lighting.
Collapse
Affiliation(s)
- Yan Li
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Can Liu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming 650224, China
| | - Menglin Chen
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming 650224, China
| | - Yunwu Zheng
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming 650224, China
| | - Hao Tian
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China
| | - Rui Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Xiahong He
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Xu Lin
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
13
|
Luo K, Luo W, Liang Z, Li Y, Kang X, Wu Y, Wen Y. Self-doping synthesis of iodine–carbon quantum dots for sensitive detection of Fe( iii) and cellular imaging. NEW J CHEM 2022. [DOI: 10.1039/d2nj03474c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iodine-doped carbon quantum dots (I-CQDs) were synthesized via p-iodobenzoic acid self-doping for the detection of ferric ions (Fe3+) and cell imaging.
Collapse
Affiliation(s)
- Kun Luo
- Faculty of Chemistry and Environment science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Wenyi Luo
- Faculty of Chemistry and Environment science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhibin Liang
- Faculty of Chemistry and Environment science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yubin Li
- Faculty of Chemistry and Environment science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xinhuang Kang
- Faculty of Chemistry and Environment science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yulian Wu
- Faculty of Chemistry and Environment science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yanmei Wen
- Faculty of Chemistry and Environment science, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|