1
|
Rando G, Scalone E, Sfameni S, Plutino MR. Functional Bio-Based Polymeric Hydrogels for Wastewater Treatment: From Remediation to Sensing Applications. Gels 2024; 10:498. [PMID: 39195027 DOI: 10.3390/gels10080498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
In recent years, many researchers have focused on designing hydrogels with specific functional groups that exhibit high affinity for various contaminants, such as heavy metals, organic pollutants, pathogens, or nutrients, or environmental parameters. Novel approaches, including cross-linking strategies and the use of nanomaterials, have been employed to enhance the structural integrity and performance of the desired hydrogels. The evolution of these hydrogels is further highlighted, with an emphasis on fine-tuning features, including water absorption capacity, environmental pollutant/factor sensing and selectivity, and recyclability. Furthermore, this review investigates the emerging topic of stimuli-responsive smart hydrogels, underscoring their potential in both sorption and detection of water pollutants. By critically assessing a wide range of studies, this review not only synthesizes existing knowledge, but also identifies advantages and limitations, and describes future research directions in the field of chemically engineered hydrogels for water purification and monitoring with a low environmental impact as an important resource for chemists and multidisciplinary researchers, leading to improvements in sustainable water management technology.
Collapse
Affiliation(s)
- Giulia Rando
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Elisabetta Scalone
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, 98166 Messina, Italy
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| |
Collapse
|
2
|
Barbinta-Patrascu ME, Bita B, Negut I. From Nature to Technology: Exploring the Potential of Plant-Based Materials and Modified Plants in Biomimetics, Bionics, and Green Innovations. Biomimetics (Basel) 2024; 9:390. [PMID: 39056831 PMCID: PMC11274542 DOI: 10.3390/biomimetics9070390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
This review explores the extensive applications of plants in areas of biomimetics and bioinspiration, highlighting their role in developing sustainable solutions across various fields such as medicine, materials science, and environmental technology. Plants not only serve essential ecological functions but also provide a rich source of inspiration for innovations in green nanotechnology, biomedicine, and architecture. In the past decade, the focus has shifted towards utilizing plant-based and vegetal waste materials in creating eco-friendly and cost-effective materials with remarkable properties. These materials are employed in making advancements in drug delivery, environmental remediation, and the production of renewable energy. Specifically, the review discusses the use of (nano)bionic plants capable of detecting explosives and environmental contaminants, underscoring their potential in improving quality of life and even in lifesaving applications. The work also refers to the architectural inspirations drawn from the plant world to develop novel design concepts that are both functional and aesthetic. It elaborates on how engineered plants and vegetal waste have been transformed into value-added materials through innovative applications, especially highlighting their roles in wastewater treatment and as electronic components. Moreover, the integration of plants in the synthesis of biocompatible materials for medical applications such as tissue engineering scaffolds and artificial muscles demonstrates their versatility and capacity to replace more traditional synthetic materials, aligning with global sustainability goals. This paper provides a comprehensive overview of the current and potential uses of living plants in technological advancements, advocating for a deeper exploration of vegetal materials to address pressing environmental and technological challenges.
Collapse
Affiliation(s)
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 077125 Magurele, Romania;
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| |
Collapse
|
3
|
Rando G, Sfameni S, Milone M, Mezzi A, Brucale M, Notti A, Plutino MR. Smart pillar[5]arene-based PDMAEMA/PES beads for selective dye pollutants removal: design, synthesis, chemical-physical characterization, and adsorption kinetic studies. CHEMSUSCHEM 2024; 17:e202301502. [PMID: 38154027 DOI: 10.1002/cssc.202301502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
This article reports on the synthesis of an innovative smart polymer, P5-QPDMAEMA, opportunely developed with the aim of combining the responsiveness of PDMAEMA polymer and the host-guest properties of covalently linked pillar[5]arenes. Thanks to a traditional Non-Induced Phase Separation (NIPS) process performed at various coagulation pH, the blending of P5-QPDMAEMA with polyethersulfone gave rise to the formation of functional beads for the removal of organic dyes in water. Adsorption tests are carried out on all the produced blend-based beads by employing two representative dyes, the cationic methylene blue (MB), and the anionic methyl orange (MO). In particular, the P5-QPDMAEMA based beads, prepared at acidic pH, featured the best MO removal rate (i. e., 91.3 % after 150 minutes starting from a 20 mg ⋅ L-1 solution) and a high selectivity towards the removal of the selected anionic dye. Based on the adsorption kinetics and isotherm calculations, the pseudo-first order and Freundlich models were shown to be the most suitable to describe the MO adsorption behavior, achieving a maximum adsorption capacity of 21.54 mg ⋅ g-1. Furthermore, zwitterionic beads are obtained by a post-functionalization of the PDMAEMA and the P5-QPDMAEMA based beads, to test their removal capability towards both anionic and cationic dyes, as shown.
Collapse
Affiliation(s)
- Giulia Rando
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
- Institute for the Study of Nanostructured Materials, ISMN - CNR, URT Messina, c/o Dep. ChiBioFarAm, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN - CNR, URT Messina, c/o Dep. ChiBioFarAm, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Marco Milone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Alessio Mezzi
- Institute for the Study of Nanostructured Materials, ISMN - CNR, via Salaria Km 29.3, 00015, Monterotondo stazione, Rome, Italy
| | - Marco Brucale
- Institute for the Study of Nanostructured Materials, ISMN - CNR, via P. Gobetti 101, 40129, Bologna, Italy
| | - Anna Notti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN - CNR, URT Messina, c/o Dep. ChiBioFarAm, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| |
Collapse
|
4
|
Umair M, Huma Zafar S, Cheema M, Usman M. New insights into the environmental application of hybrid nanoparticles in metal contaminated agroecosystem: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119553. [PMID: 37976639 DOI: 10.1016/j.jenvman.2023.119553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/15/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Heavy metals (HMs) contamination in agricultural soils is a major constraint to provide safe food to society. Cultivation of food crops on these soils, channels the HMs into the food chain and causes serious human health and socioeconomic problems. Multiple conventional and non-conventional remedial options are already in practice with variable success rates, but nanotechnology has proved its success due to higher efficiency. It also led the hypothesis to use hybrid nanoparticles (HNPs) with extended benefits to remediate the HMs and supplement nutrients to enhance the crop yield in the contaminated environments. Hybrid nanoparticles are defined as exclusive chemical conjugates of inorganic and/or organic nanomaterials that are combinations of two or more organic components, two or more inorganic components, or at least one of both types of components. HNPs of different elements like essential nutrients, beneficial nutrients and carbon-based nanoparticles are used for the remediation of metals contaminated soil and the production of metal free crops. Characterizing features of HNPs including particle size, surface area, reactivity, and solubility affect the efficacy of these HNPs in the contaminated environment. Hybrid nanoparticles have great potential to remove the HMs ions from soil solution and restrict their ingress into the root tissues. Furthermore, HNPs of essential nutrients not only compete with heavy metal uptake by plants but also fulfill the need of nutrients. This review provides a comprehensive overview of the challenges associated with application of HNPs in contaminated soils, environmental implications, their remediation ability, and factors affecting their dynamics in environmental matrices.
Collapse
Affiliation(s)
- Muhammad Umair
- Agricultural Research Station, Bahawalpur, 63100, Punjab, Pakistan; Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Punjab, Pakistan.
| | - Sehrish Huma Zafar
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Punjab, Pakistan.
| | - Mumtaz Cheema
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook, A2H 5G4, Newfoundland, Canada.
| | - Muhammad Usman
- College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48823, USA.
| |
Collapse
|
5
|
Sfameni S, Rando G, Plutino MR. Sustainable Secondary-Raw Materials, Natural Substances and Eco-Friendly Nanomaterial-Based Approaches for Improved Surface Performances: An Overview of What They Are and How They Work. Int J Mol Sci 2023; 24:ijms24065472. [PMID: 36982545 PMCID: PMC10049648 DOI: 10.3390/ijms24065472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
To meet modern society’s requirements for sustainability and environmental protection, innovative and smart surface coatings are continually being developed to improve or impart surface functional qualities and protective features. These needs regard numerous different sectors, such as cultural heritage, building, naval, automotive, environmental remediation and textiles. In this regard, researchers and nanotechnology are therefore mostly devoted to the development of new and smart nanostructured finishings and coatings featuring different implemented properties, such as anti-vegetative or antibacterial, hydrophobic, anti-stain, fire retardant, controlled release of drugs, detection of molecules and mechanical resistance. A variety of chemical synthesis techniques are usually employed to obtain novel nanostructured materials based on the use of an appropriate polymeric matrix in combination with either functional doping molecules or blended polymers, as well as multicomponent functional precursors and nanofillers. Further efforts are being made, as described in this review, to carry out green and eco-friendly synthetic protocols, such as sol–gel synthesis, starting from bio-based, natural or waste substances, in order to produce more sustainable (multi)functional hybrid or nanocomposite coatings, with a focus on their life cycle in accordance with the circular economy principles.
Collapse
Affiliation(s)
- Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Giulia Rando
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, 98166 Messina, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
- Correspondence: ; Tel.: +39-0906765713
| |
Collapse
|
6
|
Sfameni S, Lawnick T, Rando G, Visco A, Textor T, Plutino MR. Super-Hydrophobicity of Polyester Fabrics Driven by Functional Sustainable Fluorine-Free Silane-Based Coatings. Gels 2023; 9:109. [PMID: 36826279 PMCID: PMC9957304 DOI: 10.3390/gels9020109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Polyester fibers are widely employed in a multitude of sectors and applications from the technical textiles to everyday life thanks to their durability, strength, and flexibility. Despite these advantages, polyester lacks in dyeability, adhesion of coating, hydrophilicity, and it is characterized by a low wettability respect to natural fibers. On this regard, beyond the harmful hydrophobic textile finishings of polyester fabrics containing fluorine-compounds, and in order to avoid pre-treatments, such as laser irradiation to improve their surface properties, research is moving towards the development of fluorine-free and safer coatings. In this work, the (3-glycidyloxypropyl)trimethoxysilane (GPTMS) and various long alkyl-chain alkoxysilanes were employed for the fabrication in the presence of a catalyst of a water-based superhydrophobic finishing for polyester fabrics with a simple sol-gel, non-fluorinated, sustainable approach and the dip-pad-dry-cure method. The finished polyester fabrics surface properties were investigated by static and dynamic water repellency tests. Additionally, the resistance to common water-based liquids, abrasion resistance, moisture adsorption, and air permeability measurements were performed. Scanning electron microscopy was employed to examine the micro- and nano-morphology of the functionalized polyester fabrics surfaces. The obtained superhydrophobic finishings displayed high water-based stain resistance as well as good hydrophobicity after different cycles of abrasion.
Collapse
Affiliation(s)
- Silvia Sfameni
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Tim Lawnick
- TEXOVERSUM School of Textiles, Reutlingen University, 72762 Reutlingen, Germany
| | - Giulia Rando
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Annamaria Visco
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
- Institute for Polymers, Composites and Biomaterials CNR IPCB, Via Paolo Gaifami 18, 9-95126 Catania, Italy
| | - Torsten Textor
- TEXOVERSUM School of Textiles, Reutlingen University, 72762 Reutlingen, Germany
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
7
|
Rando G, Sfameni S, Plutino MR. Development of Functional Hybrid Polymers and Gel Materials for Sustainable Membrane-Based Water Treatment Technology: How to Combine Greener and Cleaner Approaches. Gels 2022; 9:gels9010009. [PMID: 36661777 PMCID: PMC9857570 DOI: 10.3390/gels9010009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Water quality and disposability are among the main challenges that governments and societies will outside during the next years due to their close relationship to population growth and urbanization and their direct influence on the environment and socio-economic development. Potable water suitable for human consumption is a key resource that, unfortunately, is strongly limited by anthropogenic pollution and climate change. In this regard, new groups of compounds, referred to as emerging contaminants, represent a risk to human health and living species; they have already been identified in water bodies as a result of increased industrialization. Pesticides, cosmetics, personal care products, pharmaceuticals, organic dyes, and other man-made chemicals indispensable for modern society are among the emerging pollutants of difficult remediation by traditional methods of wastewater treatment. However, the majority of the currently used waste management and remediation techniques require significant amounts of energy and chemicals, which can themselves be sources of secondary pollution. Therefore, this review reported newly advanced, efficient, and sustainable techniques and approaches for water purification. In particular, new advancements in sustainable membrane-based filtration technologies are discussed, together with their modification through a rational safe-by-design to modulate their hydrophilicity, porosity, surface characteristics, and adsorption performances. Thus, their preparation by the use of biopolymer-based gels is described, as well as their blending with functional cross-linkers or nanofillers or by advanced and innovative approaches, such as electrospinning.
Collapse
Affiliation(s)
- Giulia Rando
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, 98166 Messina, Italy
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
- Correspondence: ; Tel.: +39-0906765713
| |
Collapse
|
8
|
Sfameni S, Del Tedesco A, Rando G, Truant F, Visco A, Plutino MR. Waterborne Eco-Sustainable Sol-Gel Coatings Based on Phytic Acid Intercalated Graphene Oxide for Corrosion Protection of Metallic Surfaces. Int J Mol Sci 2022; 23:ijms231912021. [PMID: 36233325 PMCID: PMC9569461 DOI: 10.3390/ijms231912021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/01/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
In the past few years, corrosion protection of metal materials has become a global challenge, due to its great economic importance. For this reason, various methods have been developed to inhibit the corrosion process, such as surface treatment approaches, by employing corrosion inhibitors through the deposition of opportunely designed functional coatings, employed to preserve from corrosion damages metallic substrates. Recently, among these techniques and in order to avoid the toxic chromate-based pre-treatment coatings, silane-based coatings and films loaded with organic and inorganic corrosion inhibitors have been widely used in corrosion mitigation water-based surface treatment. In this study, the synthetic approach was devoted to create an embedded, hosted, waterborne, and eco-friendly matrix, obtained by use of the sol–gel technique, through the reaction of functional alkoxysilane cross-linking precursors, namely (3-glycidyloxypropyl)trimethoxysilane (GPTMS) and (3-aminopropyl)triethoxysilane (APTES), in the presence of graphene oxide (GO) intercalated with natural and non-toxic phytic acid (PA) molecules. As a matter of fact, all experimental results from FT-IR spectroscopy, UV–Vis analysis, and SEM confirmed that PA molecules were successfully decorated on GO. Furthermore, polarization measurements and a neutral salt spray test were used to evaluate the anticorrosive performance on aluminum and steel substrates, thus showing that the GO-PA nanofiller improved the barrier and corrosion protection properties of the developed functional silane-based coatings.
Collapse
Affiliation(s)
- Silvia Sfameni
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Anna Del Tedesco
- Noxorsokem Group Srl, Via Udine 46, SS 13, 33080 Cusano di Zoppola, Italy
| | - Giulia Rando
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Fulvio Truant
- Noxorsokem Group Srl, Via Udine 46, SS 13, 33080 Cusano di Zoppola, Italy
| | - Annamaria Visco
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
- Institute for Polymers, Composites and Biomaterials, CNR—IPCB, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
- Correspondence:
| |
Collapse
|
9
|
Sfameni S, Lawnick T, Rando G, Visco A, Textor T, Plutino MR. Functional Silane-Based Nanohybrid Materials for the Development of Hydrophobic and Water-Based Stain Resistant Cotton Fabrics Coatings. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193404. [PMID: 36234532 PMCID: PMC9565586 DOI: 10.3390/nano12193404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 05/31/2023]
Abstract
The textile-finishing industry, is one of the main sources of persistent organic pollutants in water; in this regard, it is necessary to develop and employ new sustainable approaches for fabric finishing and treatment. This research study shows the development of an efficient and eco-friendly procedure to form highly hydrophobic surfaces on cotton fabrics using different modified silica sols. In particular, the formation of highly hydrophobic surfaces on cotton fabrics was studied by using a two-step treatment procedure, i.e., first applying a hybrid silica sol obtained by hydrolysis and subsequent condensation of (3-Glycidyloxypropyl)trimethoxy silane with different alkyl(trialkoxy)silane under acid conditions, and then applying hydrolyzed hexadecyltrimethoxysilane on the treated fabrics to further improve the fabrics' hydrophobicity. The treated cotton fabrics showed excellent water repellency with a water contact angle above 150° under optimum treatment conditions. The cooperative action of rough surface structure due to the silica sol nanoparticles and the low surface energy caused by long-chain alkyl(trialkoxy)silane in the nanocomposite coating, combined with the expected roughness on microscale due to the fabrics and fiber structure, provided the treated cotton fabrics with excellent, almost super, hydrophobicity and water-based stain resistance in an eco-sustainable way.
Collapse
Affiliation(s)
- Silvia Sfameni
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Tim Lawnick
- TEXOVERSUM School of Textiles, Reutlingen University, 72762 Reutlingen, Germany
| | - Giulia Rando
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Annamaria Visco
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
- Institute for Polymers, Composites and Biomaterials CNR IPCB, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Torsten Textor
- TEXOVERSUM School of Textiles, Reutlingen University, 72762 Reutlingen, Germany
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
10
|
Trovato V, Sfameni S, Rando G, Rosace G, Libertino S, Ferri A, Plutino MR. A Review of Stimuli-Responsive Smart Materials for Wearable Technology in Healthcare: Retrospective, Perspective, and Prospective. Molecules 2022; 27:5709. [PMID: 36080476 PMCID: PMC9457686 DOI: 10.3390/molecules27175709] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 02/07/2023] Open
Abstract
In recent years thanks to the Internet of Things (IoT), the demand for the development of miniaturized and wearable sensors has skyrocketed. Among them, novel sensors for wearable medical devices are mostly needed. The aim of this review is to summarize the advancements in this field from current points of view, focusing on sensors embedded into textile fabrics. Indeed, they are portable, lightweight, and the best candidates for monitoring biometric parameters. The possibility of integrating chemical sensors into textiles has opened new markets in smart clothing. Many examples of these systems are represented by color-changing materials due to their capability of altering optical properties, including absorption, reflectance, and scattering, in response to different external stimuli (temperature, humidity, pH, or chemicals). With the goal of smart health monitoring, nanosized sol-gel precursors, bringing coupling agents into their chemical structure, were used to modify halochromic dyestuffs, both minimizing leaching from the treated surfaces and increasing photostability for the development of stimuli-responsive sensors. The literature about the sensing properties of functionalized halochromic azo dyestuffs applied to textile fabrics is reviewed to understand their potential for achieving remote monitoring of health parameters. Finally, challenges and future perspectives are discussed to envisage the developed strategies for the next generation of functionalized halochromic dyestuffs with biocompatible and real-time stimuli-responsive capabilities.
Collapse
Affiliation(s)
- Valentina Trovato
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine, Italy
| | - Silvia Sfameni
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Giulia Rando
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Giuseppe Rosace
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine, Italy
| | - Sebania Libertino
- Institute of Microelectronics and MicrosystemsCNR–IMM, Ottava Strada 5, 95121 Catania, Italy
| | - Ada Ferri
- Department of Applied Science and Technology, Politecnico Di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| |
Collapse
|
11
|
Sfameni S, Rando G, Galletta M, Ielo I, Brucale M, De Leo F, Cardiano P, Cappello S, Visco A, Trovato V, Urzì C, Plutino MR. Design and Development of Fluorinated and Biocide-Free Sol–Gel Based Hybrid Functional Coatings for Anti-Biofouling/Foul-Release Activity. Gels 2022; 8:gels8090538. [PMID: 36135250 PMCID: PMC9498927 DOI: 10.3390/gels8090538] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 02/03/2023] Open
Abstract
Biofouling has destructive effects on shipping and leisure vessels, thus producing severe problems for marine and naval sectors due to corrosion with consequent elevated fuel consumption and higher maintenance costs. The development of anti-fouling or fouling release coatings creates deterrent surfaces that prevent the initial settlement of microorganisms. In this regard, new silica-based materials were prepared using two alkoxysilane cross-linkers containing epoxy and amine groups (i.e., 3-Glycidyloxypropyltrimethoxysilane and 3-aminopropyltriethoxysilane, respectively), in combination with two functional fluoro-silane (i.e., 3,3,3-trifluoropropyl-trimethoxysilane and glycidyl-2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-hexadecafluorononylether) featuring well-known hydro repellent and anti-corrosion properties. As a matter of fact, the co-condensation of alkoxysilane featuring epoxide and amine ends, also mixed with two opportune long chain and short chain perfluorosilane precursors, allows getting stable amphiphilic, non-toxic, fouling release coatings. The sol–gel mixtures on coated glass slides were fully characterized by FT-IR spectroscopy, while the morphology was studied by scanning electron microscopy (SEM), and atomic force microscopy (AFM). The fouling release properties were evaluated through tests on treated glass slides in different microbial suspensions in seawater-based mediums and in seawater natural microcosms. The developed fluorinated coatings show suitable antimicrobial activities and low adhesive properties; no biocidal effects were observed for the microorganisms (bacteria).
Collapse
Affiliation(s)
- Silvia Sfameni
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Giulia Rando
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Maurilio Galletta
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Ileana Ielo
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Marco Brucale
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Bologna, CNR Bologna Research Area, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Filomena De Leo
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Paola Cardiano
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Simone Cappello
- Institute for Biological Resource and Marine Biotechnology (IRBIM)—CNR of Messina, Spianata S. Raineri 86, 98122 Messina, Italy
| | - Annamaria Visco
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
- Institute for Polymers, Composites and Biomaterials, CNR—IPCB, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Valentina Trovato
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine, Italy
| | - Clara Urzì
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
- Correspondence: (C.U.); (M.R.P.)
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
- Correspondence: (C.U.); (M.R.P.)
| |
Collapse
|
12
|
Sfameni S, Rando G, Marchetta A, Scolaro C, Cappello S, Urzì C, Visco A, Plutino MR. Development of Eco-Friendly Hydrophobic and Fouling-Release Coatings for Blue-Growth Environmental Applications: Synthesis, Mechanical Characterization and Biological Activity. Gels 2022; 8:528. [PMID: 36135240 PMCID: PMC9498436 DOI: 10.3390/gels8090528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
The need to ensure adequate antifouling protection of the hull in the naval sector led to the development of real painting cycles, which involve the spreading of three layers of polymeric material on the hull surface exposed to the marine environment, specifically defined as primer, tie coat and final topcoat. It is already well known that coatings based on suitable silanes provide an efficient and non-toxic approach for the hydrophobic and antifouling/fouling release treatment of surfaces. In the present work, functional hydrophobic hybrid silica-based coatings (topcoats) were developed by using sol-gel technology and deposited on surfaces with the "doctor blade" method. In particular, those organic silanes, featuring opportune functional groups such as long (either fluorinated) alkyl chains, have a notable influence on surface wettability as showed in this study. Furthermore, the hydrophobic behavior of this functionalized coating was improved by introducing an intermediate commercial tie-coat layer between the primer and the topcoat, in order to decrease the wettability (i.e., decreasing the surface energy with a matching increase in the contact angle, CA) and to therefore make such coatings ideal for the design and development of fouling release paints. The hereby synthesized coatings were characterized by optical microscopy, contact angle analysis and a mechanical pull-off test to measure the adhesive power of the coating against a metal substrate typically used in the nautical sector. Analysis to evaluate the bacterial adhesion and the formation of microbial biofilm were related in laboratory and simulation (microcosm) scales, and assessed by SEM analysis.
Collapse
Affiliation(s)
- Silvia Sfameni
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Giulia Rando
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Alessia Marchetta
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Cristina Scolaro
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
| | - Simone Cappello
- Institute for Biological Resource and Marine Biotechnology (IRBIM)-CNR of Messina, Spianata S. Raineri 86, 98122 Messina, Italy
| | - Clara Urzì
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Annamaria Visco
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
- Institute for Polymers, Composites and Biomaterials-CNR IPCB, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| |
Collapse
|