1
|
Cuvellier JB, Andanson JM, Ballerat-Busserolles K, Hulin H, Artzner F, Malfreyt P, Ghoufi A. Importance of the Electrostatic Correlations in Surface Tension of Hydrated Reline Deep Eutectic Solvent from Combined Experiments and Molecular Dynamics Simulations. J Phys Chem B 2024; 128:4008-4020. [PMID: 38616779 DOI: 10.1021/acs.jpcb.3c08338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
In this study, the surface tension and the structure of hydrated reline are investigated by using diverse methods. Initially, the surface tension displays a nonlinear pattern as water content increases, decreasing until reaching 45 wt %, then gradually matching that of pure water. This fluctuation is associated with strong electrostatic correlations present in pure reline, which decrease as more water is added. Changes in surface tension reflect a shift from charge layering in pure reline to an increased interfacial hydrogen bonding as the water content rises. This shift causes the segregation of urea molecules into the bulk phase and a gradual anchoring of water molecules to the air-reline interface. An interesting observation is the antisurfactant effect, where heightened interfacial anchoring results in an unexpected increase in real contribution of surface tension. This, along with weakened electrostatic correlations beyond 45 wt % due to reinforced interfacial hydrogen bonding, contributes to the complex behavior of surface tension observed in this study.
Collapse
Affiliation(s)
| | - Jean-Michel Andanson
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, Clermont-Ferrand F-63000, France
| | - Karine Ballerat-Busserolles
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, Clermont-Ferrand F-63000, France
| | - Hyazann Hulin
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)─UMR 6251, Rennes F-35000, France
| | - Franck Artzner
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)─UMR 6251, Rennes F-35000, France
| | - Patrice Malfreyt
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, Clermont-Ferrand F-63000, France
| | - Aziz Ghoufi
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)─UMR 6251, Rennes F-35000, France
- Univ Paris-East Creteil, CNRS, ICMPE (UMR 7182), 2 rue Henri Dunant, Thiais F-94320, France
| |
Collapse
|
2
|
Alfurayj I, Prado DM, Prado RC, Samia AC, Burda C. Unusual Hydration Properties of Choline Fluoride-Based Deep Eutectic Solvents. J Phys Chem B 2024; 128:2762-2772. [PMID: 38466242 DOI: 10.1021/acs.jpcb.3c07625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The hydration properties of the fluoride-based deep eutectic solvent ethalineF [a solution of choline fluoride in ethylene glycol (EG) at a 1:2 molar ratio] are studied and compared to the most common deep eutectic solvent ethaline (the solution of choline chloride in EG at 1:2 molar ratio). The densities of the deep eutectic solvent (DES) based on choline fluoride in EG (ethalineF) and its mixtures with water as cosolvent are measured over the temperature range of 298-323 K. The excess properties, including excess molar volumes, excess partial molar volumes, and viscosity deviations from ideal behavior, are calculated for ethalineF/water and ethaline/water mixtures and compared. The experimental excess molar volumes and viscosity deviations of the studied pseudobinary mixtures are fitted using the Redlich-Kister (R-K) equation. The results of the R-K model successfully reproduced the experimentally calculated values with minimal standard deviations. All excess molar volumes and viscosity deviations had negative values, indicating stronger solvation interactions between the mixture components than between each pure DES or water. The excess partial molar volumes show that water molecules are preferentially solvated by the DES environment. We show that the disruption of the DES interactions (primarily OH...halide interactions) by high mole fractions of water is related to the peak ionic conductivity. The stark differences in hydration behavior between fluoride- and chloride-based ethaline are analyzed and discussed.
Collapse
Affiliation(s)
- Ibrahim Alfurayj
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Desiree Mae Prado
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Ross Clark Prado
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Anna Cristina Samia
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Clemens Burda
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|