1
|
Singh A, Winnerdy FR, Avila CA, Nogues C, Phan AT, Heddi B. Interlocking G-Quadruplexes Using a G-Triad•G Connection: Implications for G-Wire Assembly. J Am Chem Soc 2024; 146:26034-26040. [PMID: 39276075 DOI: 10.1021/jacs.4c05713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
G-quadruplexes are noncanonical structures of nucleic acids formed mainly by G-rich sequences and play crucial roles in important cellular processes. They are also increasingly used in nanotechnology for their valuable properties. Various unexpected structures of G-quadruplexes have been solved recently, including a stable G-quadruplex lacking one guanine in the G-tetrad core, harboring a vacant site. In this study, we demonstrate the interlocking of two intramolecular G-quadruplexes: one containing a vacant site (4n - 1) and the other with an unbound guanine (4n + 1). These G-quadruplexes interact through a G-triad-G connection with unprecedented 5'-3' stacking. Using these interconnection properties, we have identified a sequence capable of self-assembling into G-wires in K+ solutions with potential nanotechnological applications.
Collapse
Affiliation(s)
- Abhishek Singh
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Constanza Avendaño Avila
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, ENS Paris-Saclay, Université Paris-Saclay, 4 Avenue des sciences, Gif-sur-Yvette 91190, France
| | - Claude Nogues
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, ENS Paris-Saclay, Université Paris-Saclay, 4 Avenue des sciences, Gif-sur-Yvette 91190, France
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Brahim Heddi
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, ENS Paris-Saclay, Université Paris-Saclay, 4 Avenue des sciences, Gif-sur-Yvette 91190, France
| |
Collapse
|
2
|
Sundaresan S, Uttamrao PP, Kovuri P, Rathinavelan T. Entangled World of DNA Quadruplex Folds. ACS OMEGA 2024; 9:38696-38709. [PMID: 39310165 PMCID: PMC11411666 DOI: 10.1021/acsomega.4c04579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/28/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024]
Abstract
DNA quadruplexes participate in many biological functions. It takes up a variety of folds based on the sequence and environment. Here, a meticulous analysis of experimentally determined 437 quadruplex structures (433 PDBs) deposited in the PDB is carried out. The analysis reveals the modular representation of the quadruplex folds. Forty-eight unique quadruplex motifs (whose diversity arises out of the propeller, bulge, diagonal, and lateral loops that connect the quartets) are identified, leading to simple to complex inter/intramolecular quadruplex folds. The two-layered structural motifs are further classified into 33 continuous and 15 discontinuous motifs. While the continuous motifs can directly be extended to a quadruplex fold, the discontinuous motif requires an additional loop(s) to complete a fold, as illustrated here with examples. Similarly, higher-order quadruplex folds can also be represented by continuous or discontinuous motifs or their combinations. Such a modular representation of the quadruplex folds may assist in custom engineering of quadruplexes, designing motif-based drugs, and the prediction of the quadruplex structure. Furthermore, it could facilitate understanding of the role of quadruplexes in biological functions and diseases.
Collapse
Affiliation(s)
- Sruthi Sundaresan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana 502284, India
| | - Patil Pranita Uttamrao
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana 502284, India
| | - Purnima Kovuri
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana 502284, India
| | | |
Collapse
|
3
|
Mir B, Serrano-Chacón I, Medina P, Macaluso V, Terrazas M, Gandioso A, Garavís M, Orozco M, Escaja N, González C. Site-specific incorporation of a fluorescent nucleobase analog enhances i-motif stability and allows monitoring of i-motif folding inside cells. Nucleic Acids Res 2024; 52:3375-3389. [PMID: 38366792 PMCID: PMC11014255 DOI: 10.1093/nar/gkae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 01/17/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024] Open
Abstract
The i-motif is an intriguing non-canonical DNA structure, whose role in the cell is still controversial. Development of methods to study i-motif formation under physiological conditions in living cells is necessary to study its potential biological functions. The cytosine analog 1,3-diaza-2-oxophenoxazine (tCO) is a fluorescent nucleobase able to form either hemiprotonated base pairs with cytosine residues, or neutral base pairs with guanines. We show here that when tCO is incorporated in the proximity of a G:C:G:C minor groove tetrad, it induces a strong thermal and pH stabilization, resulting in i-motifs with Tm of 39ºC at neutral pH. The structural determination by NMR methods reveals that the enhanced stability is due to a large stacking interaction between the guanines of the tetrad with the tCO nucleobase, which forms a tCO:C+ in the folded structure at unusually-high pHs, leading to an increased quenching in its fluorescence at neutral conditions. This quenching is much lower when tCO is base-paired to guanines and totally disappears when the oligonucleotide is unfolded. By taking profit of this property, we have been able to monitor i-motif folding in cells.
Collapse
Affiliation(s)
- Bartomeu Mir
- Instituto de Química Física ‘Blas Cabrera’. CSIC. Serrano 119. 28006 Madrid. Spain
- Inorganic and Organic Chemistry Department. Organic Chemistry Section and IBUB. University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona. Spain
| | - Israel Serrano-Chacón
- Instituto de Química Física ‘Blas Cabrera’. CSIC. Serrano 119. 28006 Madrid. Spain
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). 08028 Barcelona. Spain
| | - Pedro Medina
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). 08028 Barcelona. Spain
- Departament de Bioquímica i Biomedicina. Facultat de Biologia. Universitat de Barcelona. 08028 Barcelona. Spain
| | - Veronica Macaluso
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). 08028 Barcelona. Spain
| | - Montserrat Terrazas
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). 08028 Barcelona. Spain
- Inorganic and Organic Chemistry Department. Organic Chemistry Section and IBUB. University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona. Spain
| | - Albert Gandioso
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). 08028 Barcelona. Spain
| | - Miguel Garavís
- Instituto de Química Física ‘Blas Cabrera’. CSIC. Serrano 119. 28006 Madrid. Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). 08028 Barcelona. Spain
- Departament de Bioquímica i Biomedicina. Facultat de Biologia. Universitat de Barcelona. 08028 Barcelona. Spain
| | - Núria Escaja
- Inorganic and Organic Chemistry Department. Organic Chemistry Section and IBUB. University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona. Spain
| | - Carlos González
- Instituto de Química Física ‘Blas Cabrera’. CSIC. Serrano 119. 28006 Madrid. Spain
| |
Collapse
|
4
|
Gajarsky M, Stadlbauer P, Sponer J, Cucchiarini A, Dobrovolna M, Brazda V, Mergny JL, Trantirek L, Lenarcic Zivkovic M. DNA Quadruplex Structure with a Unique Cation Dependency. Angew Chem Int Ed Engl 2024; 63:e202313226. [PMID: 38143239 DOI: 10.1002/anie.202313226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 12/26/2023]
Abstract
DNA quadruplex structures provide an additional layer of regulatory control in genome maintenance and gene expression and are widely used in nanotechnology. We report the discovery of an unprecedented tetrastranded structure formed from a native G-rich DNA sequence originating from the telomeric region of Caenorhabditis elegans. The structure is defined by multiple properties that distinguish it from all other known DNA quadruplexes. Most notably, the formation of a stable so-called KNa-quadruplex (KNaQ) requires concurrent coordination of K+ and Na+ ions at two distinct binding sites. This structure provides novel insight into G-rich DNA folding under ionic conditions relevant to eukaryotic cell physiology and the structural evolution of telomeric DNA. It highlights the differences between the structural organization of human and nematode telomeric DNA, which should be considered when using C. elegans as a model in telomere biology, particularly in drug screening applications. Additionally, the absence/presence of KNaQ motifs in the host/parasite introduces an intriguing possibility of exploiting the KNaQ fold as a plausible antiparasitic drug target. The structure's unique shape and ion dependency and the possibility of controlling its folding by using low-molecular-weight ligands can be used for the design or discovery of novel recognition DNA elements and sensors.
Collapse
Affiliation(s)
- Martin Gajarsky
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
- Current address: Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Petr Stadlbauer
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Jiri Sponer
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Anne Cucchiarini
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Michaela Dobrovolna
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
- Faculty of Chemistry, Brno University of Technology, Purkynova 464, 61200, Brno, Czech Republic
| | - Vaclav Brazda
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
- Faculty of Chemistry, Brno University of Technology, Purkynova 464, 61200, Brno, Czech Republic
| | - Jean-Louis Mergny
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Lukas Trantirek
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Martina Lenarcic Zivkovic
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| |
Collapse
|
5
|
Parekh VJ, Węgrzyn G, Arluison V, Sinden RR. Genomic Instability of G-Quadruplex Sequences in Escherichia coli: Roles of DinG, RecG, and RecQ Helicases. Genes (Basel) 2023; 14:1720. [PMID: 37761860 PMCID: PMC10530614 DOI: 10.3390/genes14091720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Guanine-rich DNA can fold into highly stable four-stranded DNA structures called G-quadruplexes (G4). Originally identified in sequences from telomeres and oncogene promoters, they can alter DNA metabolism. Indeed, G4-forming sequences represent obstacles for the DNA polymerase, with important consequences for cell life as they may lead to genomic instability. To understand their role in bacterial genomic instability, different G-quadruplex-forming repeats were cloned into an Escherichia coli genetic system that reports frameshifts and complete or partial deletions of the repeat when the G-tract comprises either the leading or lagging template strand during replication. These repeats formed stable G-quadruplexes in single-stranded DNA but not naturally supercoiled double-stranded DNA. Nevertheless, transcription promoted G-quadruplex formation in the resulting R-loop for (G3T)4 and (G3T)8 repeats. Depending on genetic background and sequence propensity for structure formation, mutation rates varied by five orders of magnitude. Furthermore, while in vitro approaches have shown that bacterial helicases can resolve G4, it is still unclear whether G4 unwinding is important in vivo. Here, we show that a mutation in recG decreased mutation rates, while deficiencies in the structure-specific helicases DinG and RecQ increased mutation rates. These results suggest that G-quadruplex formation promotes genetic instability in bacteria and that helicases play an important role in controlling this process in vivo.
Collapse
Affiliation(s)
- Virali J. Parekh
- Laboratory of DNA Structure and Mutagenesis, Department of Chemistry, Biology and Health Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA;
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, CEA Saclay, 91191 Gif-sur-Yvette, France
- UFR Sciences du Vivant, Université Paris Cité, 75006 Paris, France
| | - Richard R. Sinden
- Laboratory of DNA Structure and Mutagenesis, Department of Chemistry, Biology and Health Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA;
| |
Collapse
|
6
|
Herbert A, Pavlov F, Konovalov D, Poptsova M. Conserved microRNAs and Flipons Shape Gene Expression during Development by Altering Promoter Conformations. Int J Mol Sci 2023; 24:ijms24054884. [PMID: 36902315 PMCID: PMC10003719 DOI: 10.3390/ijms24054884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
The classical view of gene regulation draws from prokaryotic models, where responses to environmental changes involve operons regulated by sequence-specific protein interactions with DNA, although it is now known that operons are also modulated by small RNAs. In eukaryotes, pathways based on microRNAs (miR) regulate the readout of genomic information from transcripts, while alternative nucleic acid structures encoded by flipons influence the readout of genetic programs from DNA. Here, we provide evidence that miR- and flipon-based mechanisms are deeply connected. We analyze the connection between flipon conformation and the 211 highly conserved human miR that are shared with other placental and other bilateral species. The direct interaction between conserved miR (c-miR) and flipons is supported by sequence alignments and the engagement of argonaute proteins by experimentally validated flipons as well as their enrichment in promoters of coding transcripts important in multicellular development, cell surface glycosylation and glutamatergic synapse specification with significant enrichments at false discovery rates as low as 10-116. We also identify a second subset of c-miR that targets flipons essential for retrotransposon replication, exploiting that vulnerability to limit their spread. We propose that miR can act in a combinatorial manner to regulate the readout of genetic information by specifying when and where flipons form non-B DNA (NoB) conformations, providing the interactions of the conserved hsa-miR-324-3p with RELA and the conserved hsa-miR-744 with ARHGAP5 genes as examples.
Collapse
Affiliation(s)
- Alan Herbert
- InsideOutBio, 42 8th Street, Charlestown, MA 02129, USA
- Correspondence:
| | - Fedor Pavlov
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, 11 Pokrovsky Bulvar, 101000 Moscow, Russia
| | - Dmitrii Konovalov
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, 11 Pokrovsky Bulvar, 101000 Moscow, Russia
| | - Maria Poptsova
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, 11 Pokrovsky Bulvar, 101000 Moscow, Russia
| |
Collapse
|
7
|
Serrano-Chacón I, Mir B, Cupellini L, Colizzi F, Orozco M, Escaja N, González C. pH-Dependent Capping Interactions Induce Large-Scale Structural Transitions in i-Motifs. J Am Chem Soc 2023; 145:3696-3705. [PMID: 36745195 PMCID: PMC9936585 DOI: 10.1021/jacs.2c13043] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 02/07/2023]
Abstract
We study here a DNA oligonucleotide having the ability to form two different i-motif structures whose relative stability depends on pH and temperature. The major species at neutral pH is stabilized by two C:C+ base pairs capped by two minor groove G:C:G:C tetrads. The high pH and thermal stability of this structure are mainly due to the favorable effect of the minor groove tetrads on their adjacent positively charged C:C+ base pairs. At pH 5, we observe a more elongated i-motif structure consisting of four C:C+ base pairs capped by two G:T:G:T tetrads. Molecular dynamics calculations show that the conformational transition between the two structures is driven by the protonation state of key cytosines. In spite of large conformational differences, the transition between the acidic and neutral structures can occur without unfolding of the i-motif. These results represent the first case of a conformational switch between two different i-motif structures and illustrate the dramatic pH-dependent plasticity of this fascinating DNA motif.
Collapse
Affiliation(s)
- Israel Serrano-Chacón
- Instituto
de Química Física ”Rocasolano”, CSIC, Serrano 119, 28006Madrid, Spain
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028Barcelona, Spain
| | - Bartomeu Mir
- Instituto
de Química Física ”Rocasolano”, CSIC, Serrano 119, 28006Madrid, Spain
- Inorganic
and Organic Chemistry Department, Organic Chemistry Section, and IBUB, University of Barcelona, Martí i Franquès 1-11, 08028Barcelona, Spain
| | - Lorenzo Cupellini
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028Barcelona, Spain
| | - Francesco Colizzi
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028Barcelona, Spain
| | - Modesto Orozco
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028Barcelona, Spain
- Departament
de Bioquímica i Biomedicina. Facultat de Biologia, Universitat de Barcelona, 08028Barcelona, Spain
| | - Núria Escaja
- Inorganic
and Organic Chemistry Department, Organic Chemistry Section, and IBUB, University of Barcelona, Martí i Franquès 1-11, 08028Barcelona, Spain
- BIOESTRAN
Associated Unit UB-CSIC, 08028Barcelona, Spain
| | - Carlos González
- Instituto
de Química Física ”Rocasolano”, CSIC, Serrano 119, 28006Madrid, Spain
- BIOESTRAN
Associated Unit UB-CSIC, 08028Barcelona, Spain
| |
Collapse
|
8
|
Ye M, Chen EV, Pfeil SH, Martin KN, Atrafi T, Yun S, Martinez Z, Yatsunyk LA. Homopurine guanine-rich sequences in complex with N-methyl mesoporphyrin IX form parallel G-quadruplex dimers and display a unique symmetry tetrad. Bioorg Med Chem 2023; 77:117112. [PMID: 36508994 PMCID: PMC9812923 DOI: 10.1016/j.bmc.2022.117112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
DNA can fold into G-quadruplexes (GQs), non-canonical secondary structures formed by π-π stacking of G-tetrads. GQs are important in many biological processes, which makes them promising therapeutic targets. We identified a 42-nucleotide long, purine-only G-rich sequence from human genome, which contains eight G-stretches connected by A and AAAA loops. We divided this sequence into five unique segments, four guanine stretches each, named GA1-5. In order to investigate the role of adenines in GQ structure formation, we performed biophysical and X-ray crystallographic studies of GA1-5 and their complexes with a highly selective GQ ligand, N-methyl mesoporphyrin IX (NMM). Our data indicate that all variants form parallel GQs whose stability depends on the number of flexible AAAA loops. GA1-3 bind NMM with 1:1 stoichiometry. The Ka for GA1 and GA3 is modest, ∼0.3 μM -1, and that for GA2 is significantly higher, ∼1.2 μM -1. NMM stabilizes GA1-3 by 14.6, 13.1, and 7.0 °C, respectively, at 2 equivalents. We determined X-ray crystal structures of GA1-NMM (1.98 Å resolution) and GA3-NMM (2.01 Å). The structures confirm the parallel topology of GQs with all adenines forming loops and display NMM binding at the 3' G-tetrad. Both complexes dimerize through the 5' interface. We observe two novel structural features: 1) a 'symmetry tetrad' at the dimer interface, which is formed by two guanines from each GQ monomer and 2) a NMM dimer in GA1-NMM. Our structural work confirms great flexibility of adenines as structural elements in GQ formation and contributes greatly to our understanding of the structural diversity of GQs and their modes of interaction with small molecule ligands.
Collapse
Affiliation(s)
- Ming Ye
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States
| | - Erin V Chen
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States
| | - Shawn H Pfeil
- Department of Physics, West Chester University, West Chester, PA 19383, United States
| | - Kailey N Martin
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States
| | - Tamanaa Atrafi
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States
| | - Sara Yun
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States
| | - Zahara Martinez
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States
| | - Liliya A Yatsunyk
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States.
| |
Collapse
|