1
|
Kittaka A. Synthetic Studies on Vitamin D Derivatives with Diverse but Selective Biological Activities. Chem Pharm Bull (Tokyo) 2025; 73:1-17. [PMID: 39756914 DOI: 10.1248/cpb.c24-00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
2α-Functionalization of 1α,25-dihydroxyvitamin D3 (active vitamin D3) A-ring enhances binding affinity for the vitamin D receptor (VDR) and prolongs the half-life in target cells due to gaining resistance to CYP24A1-dependant metabolism. The wide variety of modified A-ring precursor enynes for Trost coupling with CD-ring bromoolefin were synthesized from d-glucose. The A-ring modification provided potent, selective biological activities without calcemic side-effects in vivo; for example, 2α-(3-hydroxypropyl)-19-nor-1α,25-dihydroxyvitamin D3 (MART-10) exhibits potent antitumor activity (0.3µg/kg/d, twice/week for 3 weeks) in nude mice inoculated with BxpC-3 cancer cells, 2α-[2-(tetrazol-2-yl)ethyl]-1α,25-dihydroxyvitamin D3 (AH-1) shows better bone-forming effects (0.02µg/kg/d, 5d/week for 4 weeks) in ovariectomized (OVX) rats as an osteoporosis model than natural active vitamin D3, and NS-74c exhibits potent VDR-antagonistic activity (IC50 7.4pM) in HL-60 culture cells. The A-ring modification was also applicable to the synthesis of stable 14-epi-19-nortachysterols, and their novel VDR binding mode was confirmed by X-ray co-crystallographic analysis. 25-Hydroxyvitamin D3 has two independent target molecules: VDR and a sterol regulatory element-binding protein (SREBP)/SREBP cleavage-activating protein (SCAP) complex, and 25-hydroxyvitamin D3 shows SREBP/SCAP inhibitory activity. The VDR-silent vitamin D analog KK-052 with selective SREBP/SCAP inhibitory activity in vivo was developed. A chemical library of side-chain fluorinated vitamin D analogs is currently under construction, and some analogs have shown potent anti-inflammatory activity and therapeutic effects on psoriasis model mice.
Collapse
Affiliation(s)
- Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| |
Collapse
|
2
|
Kawagoe F, Mototani S, Kittaka A. Efficient Stereo-Selective Fluorination on Vitamin D 3 Side-Chain Using Electrophilic Fluorination. Biomolecules 2023; 14:37. [PMID: 38254637 PMCID: PMC10812995 DOI: 10.3390/biom14010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Our research regarding side-chain fluorinated vitamin D3 analogues has explored a series of efficient fluorination methods. In this study, a new electrophilic stereo-selective fluorination methodology at C24 and C22 positions of the vitamin D3 side-chain was developed using N-fluorobenzenesulfonimide (NFSI) and CD-ring imides with an Evans chiral auxiliary (26,27,30).
Collapse
Affiliation(s)
| | | | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan; (F.K.); (S.M.)
| |
Collapse
|
3
|
Kawagoe F, Mototani S, Yasuda K, Takeuchi A, Mano H, Kakuda S, Saitoh H, Sakaki T, Kittaka A. Synthesis of (22 R)-, (22 S)-22-Fluoro-, and 22,22-Difluoro-25-hydroxyvitamin D 3 and Effects of Side-Chain Fluorination on Biological Activity and CYP24A1-Dependent Metabolism. J Org Chem 2023; 88:12394-12408. [PMID: 37590101 DOI: 10.1021/acs.joc.3c01134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Three novel analogues of C22-fluoro-25-hydroxyvitamin D3 (5-7) were synthesized and evaluated to investigate the effects of side-chain fluorination on biological activity and metabolism of vitamin D. These novel analogues were constructed by convergent synthesis applying the Wittig-Horner coupling reaction between CD-ring ketones (41,42,44) and A-ring phosphine oxide (11). The introduction of C22-fluoro units was achieved by stereoselective deoxy-fluorination for synthesizing 5 and 6 or two-step cationic fluorination for 7. The absolute configuration of the C22-fluoro-8-oxo-CD-ring (39) was confirmed by X-ray crystallographic structure determination. The basic biological activity of the side-chain fluorinated analogues, including compounds (5-7), was evaluated. Generally, osteocalcin promoter transactivation activity decreased in the order of C24-fluoro, C23-fluoro, and C22-fluoro analogues. In addition, the metabolic stability of C22-fluoro-25-hydroxyvitamin D3 (5-7) against hCYP24A1 metabolism was also evaluated. 22,22-Difluoro-25(OH)D3 (7) was more stable against hCYP24A1 metabolism compared with its non-fluorinated counterpart 25-hydroxyvitamin D3 (1), but fluorination at the C22 position had little effect on the metabolic stability compared with C24- and C23-fluoro analogues. Our research clarified that side-chain fluorination in vitamin D markedly changes CYP24A1 metabolic stability depending on the fluorinating position.
Collapse
Affiliation(s)
- Fumihiro Kawagoe
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Sayuri Mototani
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Kaori Yasuda
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Akiko Takeuchi
- Teijin Institute for Bio-medical Research, Teijin Pharma Ltd., Hino, Tokyo 191-8512, Japan
| | - Hiroki Mano
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Shinji Kakuda
- Teijin Institute for Bio-medical Research, Teijin Pharma Ltd., Hino, Tokyo 191-8512, Japan
| | - Hiroshi Saitoh
- Teijin Institute for Bio-medical Research, Teijin Pharma Ltd., Hino, Tokyo 191-8512, Japan
| | - Toshiyuki Sakaki
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| |
Collapse
|
4
|
Kawagoe F, Mototani S, Yasuda K, Mano H, Takeuchi A, Saitoh H, Sakaki T, Kittaka A. Synthesis of New 26,27-Difluoro- and 26,26,27,27-Tetrafluoro-25-hydroxyvitamin D 3: Effects of Terminal Fluorine Atoms on Biological Activity and Half-life. Chem Pharm Bull (Tokyo) 2023; 71:717-723. [PMID: 37423740 DOI: 10.1248/cpb.c23-00395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
As an extension of our research on providing a chemical library of side-chain fluorinated vitamin D3 analogues, we newly designed and synthesized 26,27-difluoro-25-hydroxyvitamin D3 (1) and 26,26,27,27-tetrafluoro-25-hydroxyvitamin D3 (2) using a convergent method applying the Wittig-Horner coupling reaction between CD-ring ketones (13, 14) and A-ring phosphine oxide (5). The basic biological activities of analogues, 1, 2, and 26,26,26,27,27,27-hexafluoro-25-hydroxyvitamin D3 [HF-25(OH)D3] were examined. Although the tetrafluorinated new compound 2 exhibited higher binding affinity for vitamin D receptor (VDR) and resistance to CYP24A1-dependent metabolism compared with the difluorinated 1 and its non-fluorinated counterpart 25-hydroxyvitamin D3 [25(OH)D3], HF-25(OH)D3 showed the highest activity among these compounds. Osteocalcin promoter transactivation activity of these fluorinated analogues was tested, and it decreased in the order of HF-25(OH)D3, 2, 1, and 25(OH)D3 in which HF-25(OH)D3 showed 19-times greater activity than the natural 25(OH)D3.
Collapse
Affiliation(s)
| | | | - Kaori Yasuda
- Faculty of Engineering, Toyama Prefectural University
| | - Hiroki Mano
- Faculty of Engineering, Toyama Prefectural University
| | - Akiko Takeuchi
- Teijin Institute for Bio-medical Research, Teijin Pharma Ltd
| | - Hiroshi Saitoh
- Teijin Institute for Bio-medical Research, Teijin Pharma Ltd
| | | | | |
Collapse
|