Zanghelini G, Giampaoli P, Athès V, Vitu S, Wilhelm V, Esteban-Decloux M. Charentaise distillation of cognac. Part I: Behavior of aroma compounds.
Food Res Int 2024;
178:113977. [PMID:
38309919 DOI:
10.1016/j.foodres.2024.113977]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 02/05/2024]
Abstract
The Charentaise distillation plays an essential role in designing cognac aroma by extracting and selectively concentrating aroma compounds from the wine along with ethanol, in addition to promoting compound formation or degradation through different chemical reactions. This traditional mode of distillation still relies heavily on empirical knowledge and the impact of its different parameters on the composition of cognac is not fully elucidated. In this context, this study aimed to broaden the current knowledge on the behavior of aroma compounds throughout the two steps of the Charentaise distillation and to investigate the formation of aroma compounds during the operation, an aspect which is seldom considered. The concentration profiles of 62 aroma compounds were represented over time for a wine and a brouillis distillation in usual scale (25 hL) with recycling. A classification system was then proposed to group compounds based on their volatilities at different ethanol concentrations in the boiling liquid, their concentration profiles and their chemical properties. This could help identify how chemical characteristics of aroma compounds affect their volatilities in hydroalcoholic media during distillation. In addition, several compounds appear to be formed during distillation, most of which are terpenes, norisoprenoids and aldehydes. Finally, to highlight the importance of different compounds to the aroma of freshly distilled cognac, their odor activity values (OAV) in the heart fraction were estimated, revealing isobutanol and (E)-ß-damascenone to be the most odorant compounds. These results provided additional elements of understanding for different aspects of the Charentaise distillation for the production of cognac, several of which can be transposed, at least in part, to different modes of distillation pertaining to other distilled beverages.
Collapse