1
|
Yang Y, Liu P, Zhou M, Yin L, Wang M, Liu T, Jiang X, Gao H. Small-molecule drugs of colorectal cancer: Current status and future directions. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166880. [PMID: 37696461 DOI: 10.1016/j.bbadis.2023.166880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the world's fourth most deadly cancer. CRC, as a genetic susceptible disease, faces significant challenges in optimizing prognosis through optimal drug treatment modalities. In recent decades, the development of innovative small-molecule drugs is expected to provide targeted interventions that accurately address the different molecular characteristics of CRC. Although the clinical application of single-target drugs is limited by the heterogeneity and high metastasis of CRC, novel small-molecule drug treatment strategies such as dual/multiple-target drugs, drug repurposing, and combination therapies can help overcome these challenges and provide new insights for improving CRC treatment. In this review, we focus on the current status of a range of small molecule drugs that are being considered for CRC therapy, including single-target drugs, dual/multiple-target drugs, drug repurposing and combination strategies, which will pave the way for targeting CRC vulnerabilities with small-molecule drugs in future personalized treatment.
Collapse
Affiliation(s)
- Yiren Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Pengyu Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Mingyang Zhou
- University of Pennsylvania, Philadelphia, PA 19104-6323, United States
| | - Linzhou Yin
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Miao Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ting Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaowen Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
2
|
Briseño-Díaz P, Schnoor M, Bello-Ramirez M, Correa-Basurto J, Rojo-Domínguez A, Arregui L, Vega L, Núñez-González E, Palau-Hernández LA, Parra-Torres CG, García Córdova ÓM, Zepeda-Castilla E, Torices-Escalante E, Domínguez-Camacho L, Xoconostle-Cazares B, Meraz-Ríos MA, Delfín-Azuara S, Carrión-Estrada DA, Villegas-Sepúlveda N, Hernández-Rivas R, Thompson-Bonilla MDR, Vargas M. Synergistic effect of antagonists to KRas4B/PDE6 molecular complex in pancreatic cancer. Life Sci Alliance 2023; 6:e202302019. [PMID: 37813486 PMCID: PMC10561825 DOI: 10.26508/lsa.202302019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis among all human cancers as it is highly resistant to chemotherapy. K-Ras mutations usually trigger the development and progression of PDAC. We hypothesized that compounds stabilizing the KRas4B/PDE6δ complex could serve as PDAC treatments. Using in silico approaches, we identified the small molecules C14 and P8 that reduced K-Ras activation in primary PDAC cells. Importantly, C14 and P8 significantly prevented tumor growth in patient-derived xenotransplants. Combined treatment with C14 and P8 strongly increased cytotoxicity in PDAC cell lines and primary cultures and showed strong synergistic antineoplastic effects in preclinical murine PDAC models that were superior to conventional therapeutics without causing side effects. Mechanistically, C14 and P8 reduced tumor growth by inhibiting AKT and ERK signaling downstream of K-RAS leading to apoptosis, specifically in PDAC cells. Thus, combined treatment with C14 and P8 may be a superior pharmaceutical strategy to improve the outcome of PDAC.
Collapse
Affiliation(s)
- Paola Briseño-Díaz
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, Mexico
| | - Martiniano Bello-Ramirez
- Laboratory of Molecular Modeling and Drug Design of the Higher School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - Jose Correa-Basurto
- Laboratory of Molecular Modeling and Drug Design of the Higher School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - Arturo Rojo-Domínguez
- Department of Natural Sciences, Metropolitan Autonomous University, Mexico City, Mexico
| | - Leticia Arregui
- Department of Natural Sciences, Metropolitan Autonomous University, Mexico City, Mexico
| | - Libia Vega
- Toxicology Department, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Enrique Núñez-González
- Department of Surgical Oncology and General Surgery, Hospital 1 de Octubre, ISSSTE, Mexico City, Mexico
| | | | | | | | - Ernesto Zepeda-Castilla
- Department of Surgical Oncology and General Surgery, Hospital 1 de Octubre, ISSSTE, Mexico City, Mexico
| | - Eduardo Torices-Escalante
- Department of Surgical Oncology and General Surgery, Hospital 1 de Octubre, ISSSTE, Mexico City, Mexico
| | - Leticia Domínguez-Camacho
- Department of Surgical Oncology and General Surgery, Hospital 1 de Octubre, ISSSTE, Mexico City, Mexico
| | - Beatriz Xoconostle-Cazares
- Department of Biotechnology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, Mexico
| | - Marco Antonio Meraz-Ríos
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, Mexico
| | - Sandra Delfín-Azuara
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, Mexico
| | - Dayan Andrea Carrión-Estrada
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, Mexico
| | - Nicolas Villegas-Sepúlveda
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, Mexico
| | - Rosaura Hernández-Rivas
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, Mexico
| | | | - Miguel Vargas
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, Mexico
| |
Collapse
|
3
|
Zou X, Li T, Mao Y, Zhu M, Chen X, Niu J, Dong T, Jiang J, Yang X. Multifunctional Drug-Loaded Phase-Change Nanoparticles Inhibit the Epithelial-Mesenchymal Transition of Hepatocellular Carcinoma by Affecting the Activity of Activated Hepatic Stellate Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6441179. [PMID: 36411770 PMCID: PMC9675611 DOI: 10.1155/2022/6441179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2024]
Abstract
Objectives. Preparation of a multifunctional drug-loaded phase-change nanoparticle (NP), pirfenidone perfluoropentane liposome NPs (PPL NPs), and combined with low-intensity focused ultrasound (LIFU) to influence epithelial mesenchymal transition (EMT) for hepatocellular carcinoma (HCC) by inhibiting the activity of activated Hepatic Stellate Cells (a-HSCs). Methods. PPL NPs were prepared by the thin film dispersion method. The appearance, particle size, zeta potential, encapsulation efficiency, drug loading rate, drug release in vitro, and stability of PPL NPs were tested. The role of a-HSCs in HCC metastasis was studied by CCK-8, colony formation assay, apoptosis, cellular uptake assay, wound healing assay, and Transwell assay. Western blot was used to detect the related protein expression levels. In vitro and vivo, the acoustic droplet vaporization (ADV) of PPL NPs was tested at different times and LIFU intensities. Biosafety of the PPL NPs was assessed by measuring nude mouse body weight and hematoxylin and eosin (H&E) staining. Results. The results showed that the PPL NPs had good biosafety, with an average particle size of 346.6 ± 62.21 nm and an average zeta potential of -15.23 mV. When the LIFU power is 2.4 W/cm2, it can improve the permeability of cells, further promote the uptake of drugs by cells, and improve the toxicity of drugs. In vitro experiments showed that PPL NPs could inhibit the proliferation of a-HSCs cells, thereby affecting the metastasis of HCC, and were related to the TGFβ-Smad2/3-Snail signaling pathway. Both in vivo and in vitro PPL NPs enhanced ultrasound imaging by LIFU-triggered ADV. Conclusion. The PPL NPs designed and prepared in this study combined with LIFU irradiation could significantly alter the EMT of HCC by inhibiting LX2. Clinically, PPL NPs will also be considered a promising contrast agent due to their ultrasound imaging capabilities.
Collapse
Affiliation(s)
- Xiaomeng Zou
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Tiantian Li
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yingxuan Mao
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Mingwei Zhu
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xi Chen
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jiamei Niu
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Tianxiu Dong
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jian Jiang
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xiuhua Yang
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|