1
|
Moyo MTG, Adali T. Gellan gum as a promising transplantation carrier for differentiated progenitor cells in ophthalmic therapies. J BIOACT COMPAT POL 2025; 40:136-157. [DOI: 10.1177/08839115241278739] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Stem cell-based therapies for various ocular conditions are increasingly gaining traction in ophthalmic treatments, with hydrogel-based polymers playing a pivotal role. Current stem cell delivery methods face challenges such as limited cell retention, immunological rejection, and uneven dispersion. Hence, there is a critical demand for innovative delivery systems to enhance the viability, localization, and integration of transplanted stem cells while minimizing adverse effects. Central to this advancement is the meticulous selection of appropriate materials. Among the promising options, gellan gum, a versatile polysaccharide, is emerging as a potential carrier for differentiated progenitor cells in regenerative medicine, particularly in ophthalmology. This study explores the utilization of gellan gum hydrogels as carriers, focusing on their biocompatibility, customizable gelation properties, and ability to encapsulate, transplant, and biofunctionalize cells. Through a review of literature, the impact of gellan gum hydrogels on cell viability parameters is investigated, revealing their potential for promoting tissue regeneration and functional recovery in ocular diseases. Furthermore, this study compares gellan gum systems utilizing natural and synthetic polymers, discerning differences in efficacy, biocompatibility, and suitability for diverse applications in regenerative ophthalmology. This review highlights the promising role of gellan gum in ophthalmic therapies, providing valuable insights into future directions and hurdles in this evolving field.
Collapse
Affiliation(s)
- Mthabisi Talent George Moyo
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Nicosia, North Cyprus, Mersin, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Girne American University, North Cyprus, Mersin, Turkey
- Research and Application Center of Biomedical Sciences, Girne American University, North Cyprus, Mersin, Turkey
| | - Terin Adali
- Department of Medical Biochemistry, Faculty of Medicine, Girne American University, North Cyprus, Mersin, Turkey
- Research and Application Center of Biomedical Sciences, Girne American University, North Cyprus, Mersin, Turkey
| |
Collapse
|
2
|
Wu KY, Osman R, Kearn N, Kalevar A. Three-Dimensional Bioprinting for Retinal Tissue Engineering. Biomimetics (Basel) 2024; 9:733. [PMID: 39727737 DOI: 10.3390/biomimetics9120733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Three-dimensional bioprinting (3DP) is transforming the field of regenerative medicine by enabling the precise fabrication of complex tissues, including the retina, a highly specialized and anatomically complex tissue. This review provides an overview of 3DP's principles, its multi-step process, and various bioprinting techniques, such as extrusion-, droplet-, and laser-based methods. Within the scope of biomimicry and biomimetics, emphasis is placed on how 3DP potentially enables the recreation of the retina's natural cellular environment, structural complexity, and biomechanical properties. Focusing on retinal tissue engineering, we discuss the unique challenges posed by the retina's layered structure, vascularization needs, and the complex interplay between its numerous cell types. Emphasis is placed on recent advancements in bioink formulations, designed to emulate retinal characteristics and improve cell viability, printability, and mechanical stability. In-depth analyses of bioinks, scaffold materials, and emerging technologies, such as microfluidics and organ-on-a-chip, highlight the potential of bioprinted models to replicate retinal disease states, facilitating drug development and testing. While challenges remain in achieving clinical translation-particularly in immune compatibility and long-term integration-continued innovations in bioinks and scaffolding are paving the way toward functional retinal constructs. We conclude with insights into future research directions, aiming to refine 3DP for personalized therapies and transformative applications in vision restoration.
Collapse
Affiliation(s)
- Kevin Y Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Rahma Osman
- Department of Medicine, School of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Natalie Kearn
- Department of Medicine, School of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Ananda Kalevar
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| |
Collapse
|
3
|
Rapti C, Luciano FC, Anaya BJ, Ramirez BI, Ongoren B, Dea-Ayuela MA, Lalatsa A, Serrano DR. Amphotericin B Ocular Films for Fungal Keratitis and a Novel 3D-Printed Microfluidic Ocular Lens Infection Model. J Fungi (Basel) 2024; 10:762. [PMID: 39590681 PMCID: PMC11595471 DOI: 10.3390/jof10110762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Fungal keratitis (FK), a severe eye infection that leads to vision impairment and blindness, poses a high risk to contact lens users, and Candida albicans remains the most common underpinning fungal pathogen in temperate climates. Patients are initially treated empirically (econazole 1% drops hourly for 24-48 h), and if there is no response, amphotericin B (AmB) 0.15% eye drops (extemporaneously manufactured to be stable for a week) are the gold-standard treatment. Here, we aim to develop a sustained-release AmB ocular film to treat FK with an enhanced corneal retention time. As there is a paucity of reliable in vitro models to evaluate ocular drug release and antifungal efficacy under flow, we developed a 3D-printed microfluidic device based on four chambers stacked in parallel, in which lenses previously inoculated with a C. albicans suspension were placed. Under the flow of a physiological fluid over 24 h, the release from the AmB-loaded film that was placed dry onto the surface of the wetted contact lenses was quantified, and their antifungal activity was assessed. AmB sodium deoxycholate micelle (dimeric form) was mixed with sodium alginate and hyaluronic acid (3:1 w/w) and cast into films (0.48 or 2.4%), which showed sustained release over 24 h and resulted in a 1.23-fold reduction and a 5.7-fold reduction in CFU/mL of C. albicans, respectively. This study demonstrates that the sustained delivery of dimeric AmB can be used for the treatment of FK and provides a facile in vitro microfluidic model for the development and testing of ophthalmic antimicrobial therapies.
Collapse
Affiliation(s)
- Chrysi Rapti
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.R.); (F.C.L.); (B.J.A.); (B.I.R.); (B.O.)
| | - Francis C. Luciano
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.R.); (F.C.L.); (B.J.A.); (B.I.R.); (B.O.)
| | - Brayan J. Anaya
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.R.); (F.C.L.); (B.J.A.); (B.I.R.); (B.O.)
| | - Bianca I. Ramirez
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.R.); (F.C.L.); (B.J.A.); (B.I.R.); (B.O.)
| | - Baris Ongoren
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.R.); (F.C.L.); (B.J.A.); (B.I.R.); (B.O.)
| | | | - Aikaterini Lalatsa
- CRUK Formulation Unit, School of Pharmacy and Biomedical Sciences, University of Strathclyde, John Arbuthnot Building, Robertson Wing, 161 Cathedral St, Glasgow G4 0RE, UK
| | - Dolores R. Serrano
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.R.); (F.C.L.); (B.J.A.); (B.I.R.); (B.O.)
- Instituto Universitario de Farmacia Industrial, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
4
|
John M, Nabizath A, Krishnakumar S, Menon U, Menon D, Nair M. Injectable Tissue Adhesive Microgel Composite Containing Antifibrotic Drug for Vocal Fold Scarring. ACS APPLIED BIO MATERIALS 2024; 7:5237-5246. [PMID: 39007499 DOI: 10.1021/acsabm.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Vocal fold (VF) scarring, a complex problem in laryngology, results from injury and inflammation of the layered architecture of the VFs. The resultant voice hoarseness, for which successful therapeutic options are currently limited, affects the patient's quality of life. A promising strategy to reverse this disorder is the use of antifibrotic drugs. The present study proposes a novel microbead-embedded injectable hydrogel that can sustain the release of the anti-fibrotic drug pirfenidone (PFD) for vocal fold scarring. Microbeads were developed using sodium alginate and gelatin, which were further embedded into a biomimetic and tissue adhesive gellan gum (GG) hydrogel. The microbead-embedded hydrogel exhibited improved injectability, viscoelasticity, tissue adhesiveness, degradability, and swelling compared to the hydrogel without beads. Additionally, the bead-embedded hydrogel could sustain the release of the PFD for a week. In vitro studies showed that the drug-loaded hydrogel could reduce the migration and proliferation of fibroblast cells in a dose-dependent manner. In summary, this study demonstrates the potential of a PFD-loaded injectable hydrogel with enhanced viscoelastic and tissue-adhesive properties for vocal fold scarring applications.
Collapse
Affiliation(s)
- Merrin John
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Aisha Nabizath
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Sreelakshmi Krishnakumar
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Unnikrishnan Menon
- Department of ENT, Amrita School of Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Deepthy Menon
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Manitha Nair
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| |
Collapse
|
5
|
Lalebeigi F, Alimohamadi A, Afarin S, Aliabadi HAM, Mahdavi M, Farahbakhshpour F, Hashemiaval N, Khandani KK, Eivazzadeh-Keihan R, Maleki A. Recent advances on biomedical applications of gellan gum: A review. Carbohydr Polym 2024; 334:122008. [PMID: 38553201 DOI: 10.1016/j.carbpol.2024.122008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Gellan gum (GG) has attracted considerable attention as a versatile biopolymer with numerous potential biological applications, especially in the fields of tissue engineering, wound healing, and cargo delivery. Due to its distinctive characteristics like biocompatibility, biodegradability, nontoxicity, and gel-forming ability, GG is well-suited for these applications. This review focuses on recent research on GG-based hydrogels and biocomposites and their biomedical applications. It discusses the incorporation of GG into hydrogels for controlled drug release, its role in promoting wound healing processes, and its potential in tissue engineering for various tissues including bone, retina, cartilage, vascular, adipose, and cardiac tissue. It provides an in-depth analysis of the latest findings and advancements in these areas, making it a valuable resource for researchers and professionals in these fields.
Collapse
Affiliation(s)
- Farnaz Lalebeigi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | | | - Shahin Afarin
- School of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Farahbakhshpour
- Medical Biotechnology Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Neginsadat Hashemiaval
- Medical Biotechnology Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Kimia Kalantari Khandani
- Medical Biotechnology Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
6
|
Moyo MTG, Adali T, Tulay P. Exploring gellan gum-based hydrogels for regenerating human embryonic stem cells in age-related macular degeneration therapy: A literature review. Regen Ther 2024; 26:235-250. [PMID: 38966602 PMCID: PMC11222715 DOI: 10.1016/j.reth.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 07/06/2024] Open
Abstract
Age-related macular degeneration (AMD) is a progressive ocular disease marked by the deterioration of retinal photoreceptor cells, leading to central vision decline, predominantly affecting the elderly population worldwide. Current treatment modalities, such as anti-VEGF agents, laser therapy, and photodynamic therapy, aim to manage the condition, with emerging strategies like stem cell replacement therapy showing promise. However, challenges like immune rejection and cell survival hinder the efficacy of stem cell interventions. Regenerative medicine faces obstacles in maximizing stem cell potential due to limitations in mimicking the dynamic cues of the extracellular matrix (ECM) crucial for guiding stem cell behaviour. Innovative biomaterials like gellan gum hydrogels offer tailored microenvironments conducive to enhancing stem cell culture efficacy and tissue regeneration. Gellan gum-based hydrogels, renowned for biocompatibility and customizable mechanical properties, provide crucial support for cell viability, differentiation, and controlled release of therapeutic factors, making them an ideal platform for culturing human embryonic stem cells (hESCs). These hydrogels mimic native tissue mechanics, promoting optimal hESC differentiation while minimizing immune responses and facilitating localized delivery. This review explores the potential of Gellan Gum-Based Hydrogels in regenerative AMD therapy, emphasizing their role in enhancing hESC regeneration and addressing current status, treatment limitations, and future directions.
Collapse
Affiliation(s)
- Mthabisi Talent George Moyo
- Near East University, Faculty of Engineering, Department of Biomedical Engineering, P.O. Box: 99138, Nicosia, Cyprus, Mersin 10, Turkey
- Girne American University, Faculty of Medicine, Department of Medical Biochemistry, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, Cyprus, Mersin 10, Turkey
- Girne American University, Research and Application Center of Biomedical Sciences, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, North Cyprus, Mersin 10, Turkey
| | - Terin Adali
- Girne American University, Faculty of Medicine, Department of Medical Biochemistry, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, Cyprus, Mersin 10, Turkey
- Girne American University, Research and Application Center of Biomedical Sciences, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, North Cyprus, Mersin 10, Turkey
| | - Pinar Tulay
- Near East University, Faculty of Medicine, Department of Medical Genetics, Nicosia, Cyprus, Mersin 10, Turkey
- Near East University, DESAM Research Institute, Nicosia, Cyprus, Mersin 10, Turkey
| |
Collapse
|
7
|
Hemmati Dezaki Z, Parivar K, Goodarzi V, Nourani MR. Cobalt/Bioglass Nanoparticles Enhanced Dermal Regeneration in a 3-Layered Electrospun Scaffold. Adv Pharm Bull 2024; 14:192-207. [PMID: 38585469 PMCID: PMC10997931 DOI: 10.34172/apb.2024.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 11/12/2022] [Accepted: 07/19/2023] [Indexed: 04/09/2024] Open
Abstract
Purpose Due to the multilayered structure of the skin tissue, the architecture of its engineered scaffolds needs to be improved. In the present study, 45s5 bioglass nanoparticles were selected to induce fibroblast proliferation and their protein secretion, although cobalt ions were added to increase their potency. Methods A 3-layer scaffold was designed as polyurethane (PU) - polycaprolactone (PCL)/ collagen/nanoparticles-PCL/collagen. The scaffolds examined by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), tensile, surface hydrophilicity and weight loss. Biological tests were performed to assess cell survival, adhesion and the pattern of gene expression. Results The mechanical assay showed the highest young modulus for the scaffold with the doped nanoparticles and the water contact angle of this scaffold after chemical crosslinking of collagen was reduced to 52.34±7.7°. In both assessments, the values were statistically compared to other groups. The weight loss of the corresponding scaffold was the highest value of 82.35±4.3 % due to the alkaline effect of metal ions and indicated significant relations in contrast to the scaffold with non-doped particles and bare one (P value<0.05). Moreover, better cell expansion, greater cell confluence and a lower degree of toxicity were confirmed. The up-regulation of TGF β1 and VEGF genes introduced this scaffold as a better model for the fibroblasts commitment to a new skin tissue among bare and nondoped scaffold (P value<0.05). Conclusion The 3-layered scaffold which is loaded with cobalt ions-bonded bioglass nanoparticles, is a better substrate for the culture of the fibroblasts.
Collapse
Affiliation(s)
- Zahra Hemmati Dezaki
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahabodin Goodarzi
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohamad Reza Nourani
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Zhang C, Wang J, Wu H, Fan W, Li S, Wei D, Song Z, Tao Y. Hydrogel-Based Therapy for Age-Related Macular Degeneration: Current Innovations, Impediments, and Future Perspectives. Gels 2024; 10:158. [PMID: 38534576 DOI: 10.3390/gels10030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 03/28/2024] Open
Abstract
Age-related macular degeneration (AMD) is an ocular disease that leads to progressive photoreceptor death and visual impairment. Currently, the most common therapeutic strategy is to deliver anti-vascular endothelial growth factor (anti-VEGF) agents into the eyes of patients with wet AMD. However, this treatment method requires repeated injections, which potentially results in surgical complications and unwanted side effects for patients. An effective therapeutic approach for dry AMD also remains elusive. Therefore, there is a surge of enthusiasm for the developing the biodegradable drug delivery systems with sustained release capability and develop a promising therapeutic strategy. Notably, the strides made in hydrogels which possess intricate three-dimensional polymer networks have profoundly facilitated the treatments of AMD. Researchers have established diverse hydrogel-based delivery systems with marvelous biocompatibility and efficacy. Advantageously, these hydrogel-based transplantation therapies provide promising opportunities for vision restoration. Herein, we provide an overview of the properties and potential of hydrogels for ocular delivery. We introduce recent advances in the utilization of hydrogels for the delivery of anti-VEGF and in cell implantation. Further refinements of these findings would lay the basis for developing more rational and curative therapies for AMD.
Collapse
Affiliation(s)
- Chengzhi Zhang
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Jiale Wang
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Hao Wu
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Wenhui Fan
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Siyu Li
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Dong Wei
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Zongming Song
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
9
|
Wu S, Xiao R, Wu Y, Xu L. Advances in tissue engineering of gellan gum-based hydrogels. Carbohydr Polym 2024; 324:121484. [PMID: 37985043 DOI: 10.1016/j.carbpol.2023.121484] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Gellan Gum (GG) is a large, naturally occurring, linear polysaccharide with a similar structure and biological properties to the extracellular matrix. It's appropriate as a matrix material for the development of different composite materials due to its biocompatibility, biodegradability, and injectability. Hydrogels made from GG have found various applications in the field of Tissue Engineering (TE) in recent years after being mixed with a variety of other organic and inorganic components. These composites are considered multifunctional developing biomaterials because of their impressive mechanical capabilities, biocompatibility, low cytotoxicity, etc. This review focuses on the emerging advances of GG-based hydrogels in TE, providing an overview of the applications of different types of GG-based composite materials in bone TE, cartilage TE, nervous TE, retina TE, and other fields. Moreover, the investigations of GG-based hydrogels as bioink components for 3D bioprinting in TE will be elucidated. This review offers general guidance for the development of biomaterials related to GG, as well as ideas for future clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Shanyi Wu
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Disease and Oral Health, Department of Operative Dentistry and Endodontics, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Rongjun Xiao
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Disease and Oral Health, Department of Operative Dentistry and Endodontics, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Yong Wu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Laijun Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
10
|
Wu KY, Akbar D, Giunta M, Kalevar A, Tran SD. Hydrogels in Ophthalmology: Novel Strategies for Overcoming Therapeutic Challenges. MATERIALS (BASEL, SWITZERLAND) 2023; 17:86. [PMID: 38203940 PMCID: PMC10780040 DOI: 10.3390/ma17010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
The human eye's intricate anatomical and physiological design necessitates tailored approaches for managing ocular diseases. Recent advancements in ophthalmology underscore the potential of hydrogels as a versatile therapeutic tool, owing to their biocompatibility, adaptability, and customizability. This review offers an exploration of hydrogel applications in ophthalmology over the past five years. Emphasis is placed on their role in optimized drug delivery for the posterior segment and advancements in intraocular lens technology. Hydrogels demonstrate the capacity for targeted, controlled, and sustained drug release in the posterior segment of the eye, potentially minimizing invasive interventions and enhancing patient outcomes. Furthermore, in intraocular lens domains, hydrogels showcase potential in post-operative drug delivery, disease sensing, and improved biocompatibility. However, while their promise is immense, most hydrogel-based studies remain preclinical, necessitating rigorous clinical evaluations. Patient-specific factors, potential complications, and the current nascent stage of research should inform their clinical application. In essence, the incorporation of hydrogels into ocular therapeutics represents a seminal convergence of material science and medicine, heralding advancements in patient-centric care within ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Dania Akbar
- Department of Human Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Michel Giunta
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Ananda Kalevar
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
11
|
Sasseville S, Karami S, Tchatchouang A, Charpentier P, Anney P, Gobert D, Proulx S. Biomaterials used for tissue engineering of barrier-forming cell monolayers in the eye. Front Bioeng Biotechnol 2023; 11:1269385. [PMID: 37840667 PMCID: PMC10569698 DOI: 10.3389/fbioe.2023.1269385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Cell monolayers that form a barrier between two structures play an important role for the maintenance of tissue functionality. In the anterior portion of the eye, the corneal endothelium forms a barrier that controls fluid exchange between the aqueous humor of the anterior chamber and the corneal stroma. This monolayer is central in the pathogenesis of Fuchs endothelial corneal dystrophy (FECD). FECD is a common corneal disease, in which corneal endothelial cells deposit extracellular matrix that increases the thickness of its basal membrane (Descemet's membrane), and forms excrescences (guttae). With time, there is a decrease in endothelial cell density that generates vision loss. Transplantation of a monolayer of healthy corneal endothelial cells on a Descemet membrane substitute could become an interesting alternative for the treatment of this pathology. In the back of the eye, the retinal pigment epithelium (RPE) forms the blood-retinal barrier, controlling fluid exchange between the choriocapillaris and the photoreceptors of the outer retina. In the retinal disease dry age-related macular degeneration (dry AMD), deposits (drusen) form between the RPE and its basal membrane (Bruch's membrane). These deposits hinder fluid exchange, resulting in progressive RPE cell death, which in turn generates photoreceptor cell death, and vision loss. Transplantation of a RPE monolayer on a Bruch's membrane/choroidal stromal substitute to replace the RPE before photoreceptor cell death could become a treatment alternative for this eye disease. This review will present the different biomaterials that are proposed for the engineering of a monolayer of corneal endothelium for the treatment of FECD, and a RPE monolayer for the treatment of dry AMD.
Collapse
Affiliation(s)
- Samantha Sasseville
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Samira Karami
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Ange Tchatchouang
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Pascale Charpentier
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Princia Anney
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Delphine Gobert
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
- Centre universitaire d’ophtalmologie (CUO), Hôpital du Saint-Sacrement, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Stéphanie Proulx
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
12
|
Adhikari B, Stager MA, Krebs MD. Cell-instructive biomaterials in tissue engineering and regenerative medicine. J Biomed Mater Res A 2023; 111:660-681. [PMID: 36779265 DOI: 10.1002/jbm.a.37510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/14/2023]
Abstract
The field of biomaterials aims to improve regenerative outcomes or scientific understanding for a wide range of tissue types and ailments. Biomaterials can be fabricated from natural or synthetic sources and display a plethora of mechanical, electrical, and geometrical properties dependent on their desired application. To date, most biomaterial systems designed for eventual translation to the clinic rely on soluble signaling moieties, such as growth factors, to elicit a specific cellular response. However, these soluble factors are often limited by high cost, convoluted synthesis, low stability, and difficulty in regulation, making the translation of these biomaterials systems to clinical or commercial applications a long and arduous process. In response to this, significant effort has been dedicated to researching cell-directive biomaterials which can signal for specific cell behavior in the absence of soluble factors. Cells of all tissue types have been shown to be innately in tune with their microenvironment, which is a biological phenomenon that can be exploited by researchers to design materials that direct cell behavior based on their intrinsic characteristics. This review will focus on recent developments in biomaterials that direct cell behavior using biomaterial properties such as charge, peptide presentation, and micro- or nano-geometry. These next generation biomaterials could offer significant strides in the development of clinically relevant medical devices which improve our understanding of the cellular microenvironment and enhance patient care in a variety of ailments.
Collapse
Affiliation(s)
- Bikram Adhikari
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Michael A Stager
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Melissa D Krebs
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado, USA
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| |
Collapse
|