1
|
Saribal D, Çalis H, Ceylan Z, Depciuch J, Cebulski J, Guleken Z. Investigation of the structural changes in the hippocampus and prefrontal cortex using FTIR spectroscopy in sleep deprived mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124702. [PMID: 38917751 DOI: 10.1016/j.saa.2024.124702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Sleep is a basic, physiological requirement for living things to survive and is a process that covers one third of our lives. Melatonin is a hormone that plays an important role in the regulation of sleep. Sleep deprivation affect brain structures and functions. Sleep deprivation causes a decrease in brain activity, with particularly negative effects on the hippocampus and prefrontal cortex. Despite the essential role of protein and lipids vibrations, polysaccharides, fatty acid side chains functional groups, and ratios between amides in brain structures and functions, the brain chemical profile exposed to gentle handling sleep deprivation model versus Melatonin exposure remains unexplored. Therefore, the present study, aims to investigate a molecular profile of these regions using FTIR spectroscopy measurement's analysis based on lipidomic approach with chemometrics and multivariate analysis to evaluate changes in lipid composition in the hippocampus, prefrontal regions of the brain. In this study, C57BL/6J mice were randomly assigned to either the control or sleep deprivation group, resulting in four experimental groups: Control (C) (n = 6), Control + Melatonin (C + M) (n = 6), Sleep Deprivation (S) (n = 6), and Sleep Deprivation + Melatonin (S + M) (n = 6). Interventions were administered each morning via intraperitoneal injections of melatonin (10 mg/kg) or vehicle solution (%1 ethanol + saline), while the S and S + M groups underwent 6 h of daily sleep deprivation from using the Gentle Handling method. All mice were individually housed in cages with ad libitum access to food and water within a 12-hour light-dark cycle. Results presented that the brain regions affected by insomnia. The structure of phospholipids, changed. Yet, not only changes in lipids but also in amides were noticed in hippocampus and prefrontal cortex tissues. Additionally, FTIR results showed that melatonin affected the lipids as well as the amides fraction in cortex and hippocampus collected from both control and sleep deprivation groups.
Collapse
Affiliation(s)
- Devrim Saribal
- Department of Biophysics, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Hakan Çalis
- Department of Internal Medicine, Bağcılar State Hospital, Istanbul, Turkey
| | - Zeynep Ceylan
- Samsun University, Faculty of Engineering, Department of Industrial Engineering, Samsun, Turkey
| | - Joanna Depciuch
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland; Institute of Nuclear Physics, PAS, 31342 Krakow, Poland
| | - Jozef Cebulski
- Institute of Physics, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Zozan Guleken
- Department of Physiology, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey.
| |
Collapse
|
2
|
Eslamizade MJ, Saffarzadeh F, Khatami S, Davoudi S, Soleimani Z, Anajafi S, Khoshnazar A, Mehdizadeh M, Mohammadi-Yeganeh S, Janahmadi M. Deregulation of Melatonin Receptors and Differential Modulation of After-Hyperpolarization and Ih Currents Using Melatonin Treatment Due to Amyloid-β-Induced Neurotoxicity in the Hippocampus. Cell Biochem Funct 2024; 42:e4129. [PMID: 39344779 DOI: 10.1002/cbf.4129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024]
Abstract
Treatment with melatonin is routinely prescribed for its potent antioxidant and cognitive-promoting effects, nevertheless, it has yet to find neuromodulatory effects in normal and disease conditions. Therefore, to investigate its neuromodulatory mechanisms, melatonin was systemically administered over 10 consecutive days to both intracortical normal saline- and amyloid-β 1-42 (Aβ) peptide-injected rats. At the behavioral level, treatment with melatonin was associated with reduced efficacy in restoring Aβ-induced deficit in passive-avoidance memory. Whole-cell patch-clamp recordings from CA1 pyramidal neurons revealed that melatonin treatment reduced spontaneous and evoked intrinsic excitability in control rats while exerting a reduction of spontaneous, but not evoked activity, in the Aβ-injected group. Interestingly, treatment with melatonin enhances after-hyperpolarization in control, but not Aβ-injected rats. In contrast, our voltage-clamp study showed that Ih current is significantly enhanced by Aβ injection, and this effect is further strengthened by treatment with melatonin in Aβ-injected rats. Finally, we discovered that the transcription of melatonin receptors 1 (MT1) and 2 (MT2) is significantly upregulated in the hippocampi of Aβ-injected rats. Collectively, our study demonstrates that systemic treatment with melatonin has differential neuromodulation on CA1 neuronal excitability, at least in part, via differential effects on after-hyperpolarization and Ih currents due to Aβ-induced neurotoxicity.
Collapse
Affiliation(s)
- Mohammad J Eslamizade
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Saffarzadeh
- Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Khatami
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Davoudi
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Soleimani
- Neuroscience Research Center and Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Anajafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amineh Khoshnazar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center and Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Canonico B, Carloni S, Montanari M, Ambrogini P, Papa S, Alonso-Alconada D, Balduini W. Melatonin Modulates Cell Cycle Dynamics and Promotes Hippocampal Cell Proliferation After Ischemic Injury in Neonatal Rats. Mol Neurobiol 2024; 61:6910-6919. [PMID: 38358438 PMCID: PMC11339182 DOI: 10.1007/s12035-024-04013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Promoting neural cell proliferation may represent an important strategy for enhancing brain repair after developmental brain injury. The present study aimed to assess the effects of melatonin on cell proliferation after an ischemic injury in the developing hippocampus, focusing on cell cycle dynamics. After in vivo neonatal hypoxia-ischemia (HI), hippocampal cell cycle dynamics were assessed by flow cytometry, together with histological evaluation of dentate gyrus cellularity and proliferation. Melatonin significantly increased the number of proliferating cells in the G2/M phase as well as the proliferating cell nuclear antigen (PCNA) and doublecortin (DCX) labeling reduced by HI. In vivo BrdU labeling revealed a higher BrdU-positivity in the dentate gyrus of ischemic rats treated with melatonin, an effect followed by increased cellularity and preserved hippocampal tissue integrity. These results indicate that the protective effect of melatonin after ischemic injury in neonatal rats may rely on the modulation of cell cycle dynamics of newborn hippocampal cells and increased cell proliferation.
Collapse
Affiliation(s)
- Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via S. Chiara 27, 61029, Urbino, PU, Italy
| | - Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via S. Chiara 27, 61029, Urbino, PU, Italy
| | - Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via S. Chiara 27, 61029, Urbino, PU, Italy
| | - Patrizia Ambrogini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via S. Chiara 27, 61029, Urbino, PU, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via S. Chiara 27, 61029, Urbino, PU, Italy
| | - Daniel Alonso-Alconada
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via S. Chiara 27, 61029, Urbino, PU, Italy.
| |
Collapse
|
4
|
He W, Wang X, Yang X, Zhang G, Zhang J, Chen L, Niu P, Chen T. Melatonin mitigates manganese-induced neural damage via modulation of gut microbiota-metabolism in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171474. [PMID: 38447734 DOI: 10.1016/j.scitotenv.2024.171474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/02/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Manganese (Mn), a common environmental and occupational risk factor for Parkinson's disease (PD), can cause central nervous system damage and gastrointestinal dysfunction. The melatonin has been shown to effectively improve neural damage and intestinal microbiota disturbances in animal models. This research investigated the mechanism by which exogenous melatonin prevented Mn-induced neurogenesis impairment and neural damage. Here, we established subchronic Mn-exposed mice model and melatonin supplement tests to evaluate the role of melatonin in alleviating Mn-induced neurogenesis impairment. Mn induced neurogenesis impairment and microglia overactivation, behavioral dysfunction, gut microbiota dysbiosis and serum metabolic disorder in mice. All these events were reversed with the melatonin supplement. The behavioral tests revealed that melatonin group showed approximately 30 % restoration of motor activity. According to quantitative real time polymerase chain reaction (qPCR) results, melatonin group showed remarkable restoration of the expression of dopamine neurons and neurogenesis markers, approximately 46.4 % (TH), 68.4 % (DCX in hippocampus) and 48 % (DCX in striatum), respectively. Interestingly, melatonin increased neurogenesis probably via the gut microbiota and metabolism modulation. The correlation analysis of differentially expressed genes associated with hippocampal neurogenesis indicated that Firmicutes-lipid metabolism might mediate the critical repair role of melatonin in neurogenesis in Mn-exposed mice. In conclusion, exogenous melatonin supplementation can promote neurogenesis, and restore neuron loss and neural function in Mn-exposed mice, and the multi-omics results provide new research ideas for future mechanistic studies.
Collapse
Affiliation(s)
- Weifeng He
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xueting Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xin Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Gaoman Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Junrou Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Li Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Tian Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
5
|
Yehia A, Abulseoud OA. Melatonin: a ferroptosis inhibitor with potential therapeutic efficacy for the post-COVID-19 trajectory of accelerated brain aging and neurodegeneration. Mol Neurodegener 2024; 19:36. [PMID: 38641847 PMCID: PMC11031980 DOI: 10.1186/s13024-024-00728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024] Open
Abstract
The unprecedented pandemic of COVID-19 swept millions of lives in a short period, yet its menace continues among its survivors in the form of post-COVID syndrome. An exponentially growing number of COVID-19 survivors suffer from cognitive impairment, with compelling evidence of a trajectory of accelerated aging and neurodegeneration. The novel and enigmatic nature of this yet-to-unfold pathology demands extensive research seeking answers for both the molecular underpinnings and potential therapeutic targets. Ferroptosis, an iron-dependent cell death, is a strongly proposed underlying mechanism in post-COVID-19 aging and neurodegeneration discourse. COVID-19 incites neuroinflammation, iron dysregulation, reactive oxygen species (ROS) accumulation, antioxidant system repression, renin-angiotensin system (RAS) disruption, and clock gene alteration. These events pave the way for ferroptosis, which shows its signature in COVID-19, premature aging, and neurodegenerative disorders. In the search for a treatment, melatonin shines as a promising ferroptosis inhibitor with its repeatedly reported safety and tolerability. According to various studies, melatonin has proven efficacy in attenuating the severity of certain COVID-19 manifestations, validating its reputation as an anti-viral compound. Melatonin has well-documented anti-aging properties and combating neurodegenerative-related pathologies. Melatonin can block the leading events of ferroptosis since it is an efficient anti-inflammatory, iron chelator, antioxidant, angiotensin II antagonist, and clock gene regulator. Therefore, we propose ferroptosis as the culprit behind the post-COVID-19 trajectory of aging and neurodegeneration and melatonin, a well-fitting ferroptosis inhibitor, as a potential treatment.
Collapse
Affiliation(s)
- Asmaa Yehia
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Osama A Abulseoud
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA.
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
| |
Collapse
|
6
|
Special Issue on “Pleiotropic Benefits of Melatonin: From Basic Mechanisms to Disease”. Int J Mol Sci 2023; 24:ijms24065223. [PMID: 36982298 PMCID: PMC10048954 DOI: 10.3390/ijms24065223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a multifunctional hormone that is naturally produced from tryptophan and released rhythmically throughout the night by the pineal gland to regulate sleep–wake cycles [...]
Collapse
|
7
|
Potes Y, Cachán-Vega C, Antuña E, García-González C, Menéndez-Coto N, Boga JA, Gutiérrez-Rodríguez J, Bermúdez M, Sierra V, Vega-Naredo I, Coto-Montes A, Caballero B. Benefits of the Neurogenic Potential of Melatonin for Treating Neurological and Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:ijms24054803. [PMID: 36902233 PMCID: PMC10002978 DOI: 10.3390/ijms24054803] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
There are several neurological diseases under which processes related to adult brain neurogenesis, such cell proliferation, neural differentiation and neuronal maturation, are affected. Melatonin can exert a relevant benefit for treating neurological disorders, given its well-known antioxidant and anti-inflammatory properties as well as its pro-survival effects. In addition, melatonin is able to modulate cell proliferation and neural differentiation processes in neural stem/progenitor cells while improving neuronal maturation of neural precursor cells and newly created postmitotic neurons. Thus, melatonin shows relevant pro-neurogenic properties that may have benefits for neurological conditions associated with impairments in adult brain neurogenesis. For instance, the anti-aging properties of melatonin seem to be linked to its neurogenic properties. Modulation of neurogenesis by melatonin is beneficial under conditions of stress, anxiety and depression as well as for the ischemic brain or after a brain stroke. Pro-neurogenic actions of melatonin may also be beneficial for treating dementias, after a traumatic brain injury, and under conditions of epilepsy, schizophrenia and amyotrophic lateral sclerosis. Melatonin may represent a pro-neurogenic treatment effective for retarding the progression of neuropathology associated with Down syndrome. Finally, more studies are necessary to elucidate the benefits of melatonin treatments under brain disorders related to impairments in glucose and insulin homeostasis.
Collapse
Affiliation(s)
- Yaiza Potes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
- Correspondence: (Y.P.); (B.C.); Tel.: +34-985102767 (Y.P.); +34-985102784 (B.C.)
| | - Cristina Cachán-Vega
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Eduardo Antuña
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Claudia García-González
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Nerea Menéndez-Coto
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Jose Antonio Boga
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - José Gutiérrez-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Manuel Bermúdez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Verónica Sierra
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33300 Villaviciosa, Asturias, Spain
| | - Ignacio Vega-Naredo
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
| | - Ana Coto-Montes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
| | - Beatriz Caballero
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
- Correspondence: (Y.P.); (B.C.); Tel.: +34-985102767 (Y.P.); +34-985102784 (B.C.)
| |
Collapse
|