1
|
Santos FND, Souza EJDD, Pires JB, Crizel RL, Cruz EPD, Kroning IS, Fonseca LM, Assis LMD, Lopes GV, Dias ARG, Zavareze EDR. Orange peel essential oil in rice starch encapsulating material for antimicrobial application against Escherichia coli. Int J Biol Macromol 2025; 289:138955. [PMID: 39706413 DOI: 10.1016/j.ijbiomac.2024.138955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
This study investigated the formation of fibers and capsules using rice starch as a wall material to encapsulate orange peel essential oil (OPEO) by electrospinning for antimicrobial applications. Rice starch at a concentration of 20 % (w/v) and varying OPEO concentrations (30 %, 40 %, and 50 %, w/w) were used to produce materials. Free OPEO was analyzed for its chemical profile and antimicrobial activity. The electrospun material was characterized for morphology, size distribution, loading capacity, functional groups, thermal properties, and antimicrobial activity against Escherichia coli. Limonene was identified as the main component of OPEO. The free OPEO was effective against E. coli and Salmonella Typhimurium. When different concentrations of OPEO were incorporated into 20 % rice starch solutions, a decrease in electrical conductivity was observed, leading to the formation of fibers and capsules instead of just fibers. The loading capacities of the materials were 35 %, 29 %, and 28 % for OPEO concentrations of 30 %, 40 %, and 50 %, respectively. Encapsulation of OPEO resulted in increased thermal stability. The material with 50 % OPEO achieved a 6-log reduction in E. coli, showing strong potential for active packaging to reduce food contamination. Future research should explore its practical use in food packaging.
Collapse
Affiliation(s)
- Felipe Nardo Dos Santos
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil.
| | - Estefania Júlia Dierings de Souza
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Juliani Buchveitz Pires
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Rosane Lopes Crizel
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Elder Pacheco da Cruz
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Isabela Schneid Kroning
- Microbiology Laboratory (LabMicro), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Laura Martins Fonseca
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Leticia Marques de Assis
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Graciela Völz Lopes
- Microbiology Laboratory (LabMicro), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Alvaro Renato Guerra Dias
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Elessandra da Rosa Zavareze
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| |
Collapse
|
2
|
Santos FND, Cruz EPD, Fonseca LM, Pires JB, Diaz PS, Dias ARG, Zavareze EDR. Cassava starch esterification with formic acid for fabrication of electrospun fibers. Int J Biol Macromol 2024; 266:131182. [PMID: 38554898 DOI: 10.1016/j.ijbiomac.2024.131182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Formic acid is utilized to induce esterification and chemical gelatinization in starch, particularly in the fabrication of electrospun fibers for nanomaterial production. This study investigated the impact of different concentrations (15, 20, 25, and 30 %) of cassava starch and formic acid as a solvent on the characteristics of the resultant polymeric solutions and electrospun fibers. Morphology, size distribution, thermogravimetric properties, diffraction patterns, and relative crystallinity were evaluated for the electrospun fibers. The amylose content of starch varied from 16.5 to 23.7 %, decreasing with esterification, achieving a degree of substitution of approximately 0.93. The solution-rheology exhibited elastic behavior, with viscosity increasing as starch concentration increased, hindering the fabrication of fibers at 25 and 30 % starch. Successful electrospun fibers were formed using 15 % and 20 % starch, displaying homogeneous morphologies with mean diameters of 165 nm and 301 nm, respectively. Esterification influenced thermogravimetric properties, leading to fibers with reduced degradation temperatures and mass loss compared to native starches. The electrospun fibers presented an amorphous structure, indicating a drastic reduction in relative crystallinity from 35.2 % in native starch to 8.5 % for esterified starches. This study highlights the intricate relationship between starch concentration, esterification, and solution viscosity, affecting the electrospinnability and properties of starch-polymeric solutions.
Collapse
Affiliation(s)
- Felipe Nardo Dos Santos
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Elder Pacheco da Cruz
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Laura Martins Fonseca
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil.
| | - Juliani Buchveitz Pires
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Patrícia Silva Diaz
- Department of Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - Alvaro Renato Guerra Dias
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Elessandra da Rosa Zavareze
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| |
Collapse
|
3
|
Santos FND, Fonseca LM, Jansen-Alves C, Crizel RL, Pires JB, Kroning IS, de Souza JF, Fajardo AR, Lopes GV, Dias ARG, Zavareze EDR. Antimicrobial activity of geranium (Pelargonium graveolens) essential oil and its encapsulation in carioca bean starch ultrafine fibers by electrospinning. Int J Biol Macromol 2024; 265:130953. [PMID: 38499124 DOI: 10.1016/j.ijbiomac.2024.130953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Geranium (Pelargonium graveolens) is known for being an aromatic plant rich in bioactive compounds with antibacterial properties. In this study, geranium essential oil (GEO) was extracted and encapsulated in ultrafine bean starch fibers produced by electrospinning as an antibacterial agent. GEO revealed a composition rich in volatile compounds, including citronellol, cis-geraniol, β-linalool, citronellyl formate, and linalool formate. In its free form, GEO exhibited high antibacterial activity against pathogenic bacteria strains (L. monocytogenes, S. aureus, and E. coli). The bean starch fibers, produced with and without the addition of GEO, were uniform and continuous, with an average diameter ranging from 249 to 373 nm. Confocal analysis indicated a uniform distribution of GEO in the fibers, with a loading capacity of 54.0 %, 42.9 %, and 36.5 % for 20 %, 30 %, and 40 % GEO concentrations, respectively. Remarkably, fibers containing 40 % GEO showed a significant reduction in tested bacteria (L. monocytogenes, S. aureus, and E. coli), suggesting promising applications in preventing losses and extending the shelf life of food through active packaging.
Collapse
Affiliation(s)
- Felipe Nardo Dos Santos
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil.
| | - Laura Martins Fonseca
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Cristina Jansen-Alves
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Rosane Lopes Crizel
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Juliani Buchveitz Pires
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Isabela Schneid Kroning
- Microbiology Laboratory (LabMicro), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Jaqueline Ferreira de Souza
- Laboratory of Technology and Development of Composites and Polymeric Materials (LaCoPol), Federal University of Pelotas, 96010-900 Pelotas, RS, Brazil
| | - André Ricardo Fajardo
- Laboratory of Technology and Development of Composites and Polymeric Materials (LaCoPol), Federal University of Pelotas, 96010-900 Pelotas, RS, Brazil
| | - Graciela Völz Lopes
- Microbiology Laboratory (LabMicro), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Alvaro Renato Guerra Dias
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Elessandra da Rosa Zavareze
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| |
Collapse
|
4
|
Pires JB, Santos FND, Cruz EPD, Fonseca LM, Siebeneichler TJ, Lemos GS, Gandra EA, Zavareze EDR, Dias ARG. Starch extraction from avocado by-product and its use for encapsulation of ginger essential oil by electrospinning. Int J Biol Macromol 2024; 254:127617. [PMID: 37879583 DOI: 10.1016/j.ijbiomac.2023.127617] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Starches from alternative sources, such as avocado seed, have potential for application in the encapsulation of essential oils. This study aimed to extract starch from avocado seeds and its use as wall material to encapsulate ginger essential oil (GEO), at different concentrations. The fibers were produced by electrospinning and evaluated by morphology, size, infrared spectra, thermogravimetric properties, contact angle, loading capacity, and antibacterial activity. The major compounds in GEO were α-zingiberene, β-sesquiphellandrene, α-farnesene, and α-curcumene. The starch-GEO fibers presented a higher diameter (∼553 nm) than those without GEO (345 nm). Encapsulation of GEO in starch fibers increased their thermal degradation temperatures from 165.8 °C (free GEO) to 257.6 °C (40 % GEO fibers). The starch-GEO fibers presented characteristic bands of their constituents by infrared spectra. Loading capacity ranged from 44 to 54 %. The fibers showed hydrophilic character, with a contact angle of <90°. Free GEO and the fibers with 50 % of GEO displayed antibacterial activity against Escherichia coli, proving the bioactivity of the starch-GEO fibers and its possible applicability for food packaging. Avocado seed starch showed to be a great wall material for GEO encapsulation.
Collapse
Affiliation(s)
- Juliani Buchveitz Pires
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil.
| | - Felipe Nardo Dos Santos
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Elder Pacheco da Cruz
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Laura Martins Fonseca
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Tatiane Jéssica Siebeneichler
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Graciele Saraiva Lemos
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Eliezer Avila Gandra
- Laboratory of Food Science and Molecular Biology (LACABIM), Center for Chemical, Pharmaceutical, and Food Sciences, Federal University of Pelotas, 96010-900 Pelotas, RS, Brazil
| | - Elessandra da Rosa Zavareze
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Alvaro Renato Guerra Dias
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| |
Collapse
|