1
|
Jatuwong K, Aiduang W, Kiatsiriroat T, Kamopas W, Lumyong S. A Review of Biochar from Biomass and Its Interaction with Microbes: Enhancing Soil Quality and Crop Yield in Brassica Cultivation. Life (Basel) 2025; 15:284. [PMID: 40003694 PMCID: PMC11856971 DOI: 10.3390/life15020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Biochar, produced from biomass, has become recognized as a sustainable soil amendment that has the potential to improve soil quality and agricultural production. This review focuses on production processes and properties of biochar derived from different types of biomass, including the synergistic interactions between biochar and soil microorganisms, emphasizing their influence on overall soil quality and crop production, particularly in cultivation of Brassica crops. It additionally addresses the potential benefits and limitations of biochar and microbial application. Biomass is a renewable and abundant resource and can be converted through pyrolysis into biochar, which has high porosity, abundant surface functionalities, and the capacity to retain nutrients. These characteristics provide optimal conditions for beneficial microbial communities that increase nutrient cycling, reduce pathogens, and improve soil structure. The information indicates that the use of biochar in Brassica crops can result in improved plant growth, yield, nutrient uptake, and stress mitigation. This review includes information about biochar properties such as pH, elemental composition, ash content, and yield, which can be affected by the different types of biomass used as well as pyrolysis conditions like temperature. Understanding these variables is essential for optimizing biochar for agricultural use. Moreover, the information on the limitations of biochar and microbes emphasizes the importance of their benefits with potential constraints. Therefore, sustainable agriculture methods can possibly be achieved by integrating biochar with microbial management measurements, resulting in higher productivity and adaptability in Brassica or other plant crop cultivation systems. This review aims to provide a comprehensive understanding of biochar's role in supporting sustainable Brassica farming and its potential to address contemporary agricultural challenges.
Collapse
Affiliation(s)
- Kritsana Jatuwong
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (K.J.); (W.A.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Worawoot Aiduang
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (K.J.); (W.A.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tanongkiat Kiatsiriroat
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Wassana Kamopas
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
2
|
Joković N, Pešić S, Vitorović J, Bogdanović A, Sharifi-Rad J, Calina D. Glucosinolates and Their Hydrolytic Derivatives: Promising Phytochemicals With Anticancer Potential. Phytother Res 2025; 39:1035-1089. [PMID: 39726346 DOI: 10.1002/ptr.8419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/29/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Recent research has increasingly focused on phytochemicals as promising anticancer agents, with glucosinolates (GSLs) and their hydrolytic derivatives playing a central role. These sulfur-containing compounds, found in plants of the Brassicales order, are converted by myrosinase enzymes into biologically active products, primarily isothiocyanates (ITCs) and indoles, which exhibit significant anticancer properties. Indole-3-carbinol, diindolylmethane, sulforaphane (SFN), phenethyl isothiocyanate (PEITC), benzyl isothiocyanate, and allyl isothiocyanate have shown potent anticancer effects in animal models, particularly in breast, prostate, lung, melanoma, bladder, hepatoma, and gastrointestinal cancers. Clinical studies further support the chemopreventive effects of SFN and PEITC, particularly in detoxifying carcinogens and altering biochemical markers in cancer patients. These compounds have demonstrated good bioavailability, low toxicity, and minimal adverse effects, supporting their potential therapeutic application. Their anticancer mechanisms include the modulation of reactive oxygen species, suppression of cancer-related signaling pathways, and direct interaction with tumor cell proteins. Additionally, semi-synthetic derivatives of GSLs have been developed to enhance anticancer efficacy. In conclusion, GSLs and their derivatives offer significant potential as both chemopreventive and therapeutic agents, warranting further clinical investigation to optimize their application in cancer treatment.
Collapse
Affiliation(s)
- Nataša Joković
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Strahinja Pešić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Jelena Vitorović
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Andrija Bogdanović
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador
- Department of Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
3
|
Sabin O, Pop RM, Bocșan IC, Chedea VS, Ranga F, Grozav A, Levai AM, Buzoianu AD. The Anti-Inflammatory, Analgesic, and Antioxidant Effects of Polyphenols from Brassica oleracea var. capitata Extract on Induced Inflammation in Rodents. Molecules 2024; 29:3448. [PMID: 39124854 PMCID: PMC11313733 DOI: 10.3390/molecules29153448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
This study investigates the anti-inflammatory, analgesic, and antioxidant properties of polyphenols extracted from Brassica oleracea var. capitata (cabbage) ethanolic extract (BOE). Given the historical use of cabbage in traditional medicine for treating various ailments, this research aims to validate these effects scientifically. The study involved the characterization of BOE's bioactive compounds using Fourier Transform Infrared Spectroscopy (FTIR) and Liquid Chromatography-Diode Array Detection-Electro-Spray Ionization Mass Spectrometry (HPLC-DAD-ESI MS) analysis. We assessed the anti-inflammatory and analgesic effects of topical and oral BOE administration on rodent models with acute and subacute inflammation. Additionally, the antioxidant capacity of orally administered BOE was evaluated. The results showed that BOE possesses significant levels of phenolic compounds with a potent antioxidant activity. The topical administration of BOE demonstrated notable anti-inflammatory effects in the tested rodent models, which were comparable with nonsteroidal anti-inflammatory drugs. These findings suggest that BOE could be a valuable natural remedy for inflammation-related conditions, supporting its traditional uses and highlighting its potential for further pharmacological development.
Collapse
Affiliation(s)
- Octavia Sabin
- Pharmacology Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No. 8, 400012 Cluj-Napoca, Romania; (O.S.)
| | - Raluca Maria Pop
- Pharmacology Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No. 8, 400012 Cluj-Napoca, Romania; (O.S.)
| | - Ioana Corina Bocșan
- Pharmacology Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No. 8, 400012 Cluj-Napoca, Romania; (O.S.)
| | - Veronica Sanda Chedea
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania;
| | - Floricuța Ranga
- Food Science and Technology, Department of Food Science, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Calea Mănăștur, No. 3-5, 400372 Cluj-Napoca, Romania;
| | - Adriana Grozav
- Department of Organic Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Antonia-Mihaela Levai
- Obstetrics and Gynecology, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, Victor Babeș, No. 8, 400012 Cluj-Napoca, Romania;
| | - Anca Dana Buzoianu
- Pharmacology Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No. 8, 400012 Cluj-Napoca, Romania; (O.S.)
| |
Collapse
|
4
|
Tileuberdi N, Katragunta K, Adams SJ, Aldana-Mejía JA, Omarbekova A, Avula B, Khan IA, Turgumbayeva A, Ross SA. Comprehensive Quality Assessment of Brassica napus L. Seeds via HPTLC, LC-QToF, and Anatomical Investigation. Molecules 2024; 29:2965. [PMID: 38998918 PMCID: PMC11243287 DOI: 10.3390/molecules29132965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
The Brassicaceae family, commonly referred to as cruciferous plants, is globally cultivated and consumed, with the Brassica genus being particularly renowned for its functional components. These vegetables are rich sources of nutrients and health-promoting phytochemicals, garnering increased attention in recent years. This study presents a comprehensive microscopic, chromatographic, and spectroscopic characterization of Brassica napus L. seeds from Kazakhstan aimed at elucidating their morphological features and chemical composition. Microscopic analysis revealed distinct localization of flavonoids, total lipids, and alkaloids. High-performance thin-layer chromatography (HPTLC) analysis of seed extracts demonstrated a complex chemical profile with significant quantities of non-polar compounds in the hexane extracts. Additionally, methanolic extracts revealed the presence of diverse chemical compounds, including alkaloids, flavonoids, and glucosinolates. The chemical composition exhibited varietal differences across different Brassica species, with B. napus L. seeds showing higher concentrations of bioactive compounds. Furthermore, liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QToF-MS) analysis provided insights into the chemical composition, with sinapine isomers, feruloyl, and sinapoyl choline derivatives as major compounds in the seeds. This study contributes to a better understanding of the chemical diversity and quality control methods' approximations of B. napus L. seeds, highlighting their importance in functional food and nutraceutical applications.
Collapse
Affiliation(s)
- Nazym Tileuberdi
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (N.T.); (A.T.)
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; (K.K.); (S.J.A.); (J.A.A.-M.); (B.A.); (I.A.K.)
| | - Kumar Katragunta
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; (K.K.); (S.J.A.); (J.A.A.-M.); (B.A.); (I.A.K.)
| | - Sebastian John Adams
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; (K.K.); (S.J.A.); (J.A.A.-M.); (B.A.); (I.A.K.)
| | - Jennyfer A. Aldana-Mejía
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; (K.K.); (S.J.A.); (J.A.A.-M.); (B.A.); (I.A.K.)
| | - Ardak Omarbekova
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan;
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; (K.K.); (S.J.A.); (J.A.A.-M.); (B.A.); (I.A.K.)
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; (K.K.); (S.J.A.); (J.A.A.-M.); (B.A.); (I.A.K.)
- Division of Pharmacognosy, Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Aknur Turgumbayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (N.T.); (A.T.)
| | - Samir A. Ross
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; (K.K.); (S.J.A.); (J.A.A.-M.); (B.A.); (I.A.K.)
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan;
- Division of Pharmacognosy, Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
5
|
Singha J, Saikia JP. Optimisation of garlic mustard oil macerate with respect to its antifungal activity against Candida albicans MTCC 183 and in-silico molecular docking of the volatile compounds with N-myristoyltransferase. Nat Prod Res 2024:1-8. [PMID: 38829315 DOI: 10.1080/14786419.2024.2360689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
Candida albicans infections are widespread in people and cause cutaneous and systemic infections. Optimisation of garlic mustard oil macerate (GMM) based on antifungal activity against C. albicans was done using agar diffusion method. Upon vapour diffusion assay, the volatile organic compounds of both GMM and MO were found to eradicate C. albicans. During agar diffusion, MO did not inhibit fungal growth, while undiluted GMM oil demonstrated a 26.33 ± 0.33 mm zone of inhibition. The minimum inhibitory concentration and minimum fungicidal concentration against C. albicans were 12.5%, v/v of GMM oil and 25%, v/v of GMM oil, respectively. Scanning electron microscopy analysis showed cell membrane disintegration of fungal cells by 50%, v/v of GMM oil, and MO caused no cell wall damage. In-silico analysis revealed strong binding affinity of sinigrin, ajoene, dithiin with N-myristoyltransferase. In conclusion, the optimised GMM preparation can be a potential antifungal agent against tropical C. albicans infections.
Collapse
Affiliation(s)
- Joydeep Singha
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Jyoti Prasad Saikia
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| |
Collapse
|
6
|
Serrano C, Oliveira MC, Lopes VR, Soares A, Molina AK, Paschoalinotto BH, Pires TCSP, Serra O, Barata AM. Chemical Profile and Biological Activities of Brassica rapa and Brassica napus Ex Situ Collection from Portugal. Foods 2024; 13:1164. [PMID: 38672837 PMCID: PMC11049378 DOI: 10.3390/foods13081164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to analyse the chemical profile and biological activities of 29 accessions of Brassica rapa (turnips) and 9 of Brassica napus (turnips and seeds) collections, maintained ex situ in Portugal. HPLC-HRMS allowed the determination of glucosinolates (GLS) and polyphenolic compounds. The antioxidant and antimicrobial activities were determined by using relevant assays. The chemical profiles showed that glucosamine, gluconasturtiin, and neoglucobrassin were the most abundant GLS in the extracts from the turnip accessions. Minor forms of GLS include gluconapoleiferin, glucobrassicanapin, glucoerucin, glucobrassin, and 4-hydroxyglucobrassin. Both species exhibited strong antioxidant activity, attributed to glucosinolates and phenolic compounds. The methanol extracts of Brassica rapa accessions were assessed against a panel of five Gram-negative bacteria (Enterobacter cloacae, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica subsp. enterica serovar, and Yersinia enterocolitica) and three Gram-positive bacteria (Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus). The extracts exhibited activity against S. enterica and S. aureus, and two showed inhibitory activity against E. coli and Y. enterocolitica. This study provides valuable insights into the chemical composition and biological properties of Brassica rapa and Brassica napus collections in Portugal. The selected accessions can constitute potential sources of natural antioxidants and bioactive compounds, which can be used in breeding programs and improving human health and to promote healthy food systems.
Collapse
Affiliation(s)
- Carmo Serrano
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, 2780-157 Oeiras, Portugal;
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Instituto Superior de Agronomia, Associated Laboratory TERRA, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - M. Conceição Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - V. R. Lopes
- Banco Português de Germoplasma Vegetal (BPGV), Agrária e Veterinária, Quinta de S. José, S. Pedro de Merelim, 4700-859 Braga, Portugal; (V.R.L.); (O.S.); (A.M.B.)
| | - Andreia Soares
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, 2780-157 Oeiras, Portugal;
| | - Adriana K. Molina
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.K.M.); (T.C.S.P.P.)
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Beatriz H. Paschoalinotto
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.K.M.); (T.C.S.P.P.)
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Tânia C. S. P. Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.K.M.); (T.C.S.P.P.)
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Octávio Serra
- Banco Português de Germoplasma Vegetal (BPGV), Agrária e Veterinária, Quinta de S. José, S. Pedro de Merelim, 4700-859 Braga, Portugal; (V.R.L.); (O.S.); (A.M.B.)
| | - Ana M. Barata
- Banco Português de Germoplasma Vegetal (BPGV), Agrária e Veterinária, Quinta de S. José, S. Pedro de Merelim, 4700-859 Braga, Portugal; (V.R.L.); (O.S.); (A.M.B.)
| |
Collapse
|
7
|
Shah OU, Khan LU, Basharat S, Zhou L, Ikram M, Peng J, Khan WU, Liu P, Waseem M. Genome-Wide Investigation of Class III Peroxidase Genes in Brassica napus Reveals Their Responsiveness to Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:942. [PMID: 38611473 PMCID: PMC11013820 DOI: 10.3390/plants13070942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 04/14/2024]
Abstract
Brassica napus (B. napus) is susceptible to multiple abiotic stresses that can affect plant growth and development, ultimately reducing crop yields. In the past, many genes that provide tolerance to abiotic stresses have been identified and characterized. Peroxidase (POD) proteins, members of the oxidoreductase enzyme family, play a critical role in protecting plants against abiotic stresses. This study demonstrated a comprehensive investigation of the POD gene family in B. napus. As a result, a total of 109 POD genes were identified across the 19 chromosomes and classified into five distinct subgroups. Further, 44 duplicate events were identified; of these, two gene pairs were tandem and 42 were segmental. Synteny analysis revealed that segmental duplication was more prominent than tandem duplication among POD genes. Expression pattern analysis based on the RNA-seq data of B. napus indicated that BnPOD genes were expressed differently in various tissues; most of them were expressed in roots rather than in other tissues. To validate these findings, we performed RT-qPCR analysis on ten genes; these genes showed various expression levels under abiotic stresses. Our findings not only furnish valuable insights into the evolutionary dynamics of the BnPOD gene family but also serve as a foundation for subsequent investigations into the functional roles of POD genes in B. napus.
Collapse
Affiliation(s)
- Obaid Ullah Shah
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Latif Ullah Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Sana Basharat
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Lingling Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Muhammad Ikram
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Jiantao Peng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Wasi Ullah Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Pingwu Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Muhammad Waseem
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| |
Collapse
|
8
|
Wadaan MA, Baabbad A, Farooq Khan M. Assessment of antidiabetic, anti-inflammatory, antioxidant and anticancer activity competence of methonolic extracts of Trianthema ortulacastrum and Andrographis paniculata. ENVIRONMENTAL RESEARCH 2024; 242:117764. [PMID: 38029820 DOI: 10.1016/j.envres.2023.117764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
An in-vitro investigation was performed to evaluate and compare the phytochemical, antioxidant, antidiabetic, anti-inflammatory, and anti-lung cancer activities of methanol extracts of aerial parts of Andrographis paniculata and Trianthema portulacastrum. Furthermore studied major functional groups of phytochemicals present in the methanol extracts of these plants through Fourier transform infrared (FTIR) analysis. The results showed that the methanol extract of A. paniculata contain more number of pharmaceutically valuable phytochemicals such as alkaloids, flavonoids, terpenoids, saponin, glycoside, phytosterol, and tannin than T. portulacastrum. Similar way the methanol extract of A. paniculata showed considerable dose dependent antioxidant (DPPH: 63%), antidiabetic (α-amylase: 82.31% and α-glucosidase inhibitions: 72.34%), and anti-inflammatory (albumin-denaturation inhibition: 76.3% and anti-lipoxygenase: 61.2%) activities (at 900 μg mL-1 concentration) than T. portulacastrum. However, the anti-lung cancer activities of these test plants against A549 cells were not considerable. According to FTIR analysis, the A. paniculata methanol extract has a larger number of characteristic peaks attributed to the active functional groups of pharmaceutically valuable bioactive components that belong to different types of phytochemicals. These findings imply that A. paniculata methanol extracts can be used for additional research, such as bioactive compound screening and purification, as well as assessing their potential biomedical uses in various in-vitro and in-research settings.
Collapse
Affiliation(s)
- Mohammad Ahmad Wadaan
- Bio-Products Research Chair, Department of Zoology, College of Sciences, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia.
| | - Almohannad Baabbad
- Bio-Products Research Chair, Department of Zoology, College of Sciences, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Farooq Khan
- Bio-Products Research Chair, Department of Zoology, College of Sciences, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
9
|
Muthusamy M, Lee SI. Abiotic stress-induced secondary metabolite production in Brassica: opportunities and challenges. FRONTIERS IN PLANT SCIENCE 2024; 14:1323085. [PMID: 38239210 PMCID: PMC10794482 DOI: 10.3389/fpls.2023.1323085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024]
Abstract
Over the decades, extensive research efforts have been undertaken to understand how secondary plant metabolites are affected by genetic, environmental, and agronomic factors. Understanding the genetic basis of stress-response metabolite biosynthesis is crucial for sustainable agriculture production amidst frequent occurrence of climatic anomalies. Although it is known that environmental factors influence phytochemical profiles and their content, studies of plant compounds in relation to stress mitigation are only emerging and largely hindered by phytochemical diversities and technical shortcomings in measurement techniques. Despite these challenges, considerable success has been achieved in profiling of secondary metabolites such as glucosinolates, flavonoids, carotenoids, phenolic acids and alkaloids. In this study, we aimed to understand the roles of glucosinolates, flavonoids, carotenoids, phenolic acids and alkaloids in relation to their abiotic stress response, with a focus on the developing of stress-resilient crops. The focal genus is the Brassica since it (i) possesses variety of specialized phytochemicals that are important for its plant defense against major abiotic stresses, and (ii) hosts many economically important crops that are sensitive to adverse growth conditions. We summarize that augmented levels of specialized metabolites in Brassica primarily function as stress mitigators against oxidative stress, which is a secondary stressor in many abiotic stresses. Furthermore, it is clear that functional characterization of stress-response metabolites or their genetic pathways describing biosynthesis is essential for developing stress-resilient Brassica crops.
Collapse
Affiliation(s)
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
10
|
Waliat S, Arshad MS, Hanif H, Ejaz A, Khalid W, Kauser S, Al-Farga A. A review on bioactive compounds in sprouts: extraction techniques, food application and health functionality. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2176001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Sadaf Waliat
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | | | - Hadia Hanif
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Afaf Ejaz
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Safura Kauser
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Ammar Al-Farga
- Department of Food Science, Faculty of Agriculture, Ibb University, Ibb, Yemen
| |
Collapse
|
11
|
Ayadi J, Debouba M, Rahmani R, Bouajila J. The Phytochemical Screening and Biological Properties of Brassica napus L. var. napobrassica (Rutabaga) Seeds. Molecules 2023; 28:6250. [PMID: 37687079 PMCID: PMC10488400 DOI: 10.3390/molecules28176250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Rutabaga, also known as swede and scientifically classified as Brassica napus napobrassica, is a biennial edible root vegetable that belongs to the Brassica genus and is widely cultivated in North Europe and North America. The present study highlights both the phytochemical profile and the in vitro biological properties of rutabaga seed extracts obtained through maceration using solvents of increasing polarity, namely, cyclohexane (CYHA), dichloromethane (DCM), ethyl acetate (EtOAc), methanol (MeOH), and water (H2O). HPLC-DAD was used to identify and quantify phenolic compounds, while volatile compounds were detected using GC-MS. The in vitro antioxidant capacity of the rutabaga seed extracts was evaluated through DPPH free radical scavenging activity. The in vitro anti-inflammatory activity (15-lipoxygenase (15-LOX) enzyme) was determined spectrophotometrically at the same concentration. Additionally, the cytotoxicity of the seed extracts was evaluated against human colon adenocarcinoma cells (Caco-2) and human embryonic kidney cells (HEK-293) using the MTT assay. The rutabaga seed extracts obtained from EtOAc, MeOH, and H2O were particularly rich in reducing sugars, ranging from 189.87 to 473.75 mg/g DW. The MeOH extract displayed the highest concentration of both sugars and polyphenols. Phytochemically, the HPLC-DAD analysis revealed the presence of four phenolic compounds in the tested extracts, including (±) synephrine, gallic acid, p-coumaric acid, and trans-ferulic acid, newly discovered in rutabaga organs. Moreover, a total of ten volatile compounds were identified through GC-MS analysis, both before and after derivatization. At a concentration of 50 µg/mL, the methanol extract exhibited high antioxidant activity with 52.95% inhibition, while CYHA, DCM, and EtOAc exhibited moderate anti-15-LOX activity with less than 30% inhibition. Except for DCM and aqueous extracts, rutabaga seeds did not exhibit any anti-proliferative potential against Caco-2 cell lines. Interestingly, no cytotoxicity was registered for any of the seed extracts against the normal cell line HEK-293. Overall, the obtained data highlight the potential utilization of rutabaga seeds as a source of bioactive compounds in various fields, including pharmaceuticals, nutraceuticals, and functional foods.
Collapse
Affiliation(s)
- Jawaher Ayadi
- Laboratoire de Recherche, Biodiversité, Molécule et Application, Institut Supérieur de Biologie Appliquée de Médenine, Université de Gabès, Zrig, Gabès 6072, Tunisia; (J.A.); (R.R.)
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, F-31062 Toulouse, France
| | - Mohamed Debouba
- Laboratoire de Recherche, Biodiversité, Molécule et Application, Institut Supérieur de Biologie Appliquée de Médenine, Université de Gabès, Zrig, Gabès 6072, Tunisia; (J.A.); (R.R.)
| | - Rami Rahmani
- Laboratoire de Recherche, Biodiversité, Molécule et Application, Institut Supérieur de Biologie Appliquée de Médenine, Université de Gabès, Zrig, Gabès 6072, Tunisia; (J.A.); (R.R.)
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, F-31062 Toulouse, France
| |
Collapse
|
12
|
Pruteanu LL, Bailey DS, Grădinaru AC, Jäntschi L. The Biochemistry and Effectiveness of Antioxidants in Food, Fruits, and Marine Algae. Antioxidants (Basel) 2023; 12:antiox12040860. [PMID: 37107235 PMCID: PMC10135154 DOI: 10.3390/antiox12040860] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
It is more effective to maintain good health than to regain it after losing it. This work focuses on the biochemical defense mechanisms against free radicals and their role in building and maintaining antioxidant shields, aiming to show how to balance, as much as possible, the situations in which we are exposed to free radicals. To achieve this aim, foods, fruits, and marine algae with a high antioxidant content should constitute the basis of nutritional elements, since natural products are known to have significantly greater assimilation efficiency. This review also gives the perspective in which the use of antioxidants can extend the life of food products, by protecting them from damage caused by oxidation as well as their use as food additives.
Collapse
Affiliation(s)
- Lavinia Lorena Pruteanu
- Department of Chemistry and Biology, North University Center at Baia Mare, Technical University of Cluj-Napoca, 430122 Baia Mare, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - David Stanley Bailey
- IOTA Pharmaceuticals Ltd., St Johns Innovation Centre, Cowley Road, Cambridge CB4 0WS, UK
| | - Andrei Cristian Grădinaru
- Department of Genetics, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences of Iaşi, 700490 Iaşi, Romania
| | - Lorentz Jäntschi
- Institute of Doctoral Studies, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
- Department of Physics and Chemistry, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Cicio A, Serio R, Zizzo MG. Anti-Inflammatory Potential of Brassicaceae-Derived Phytochemicals: In Vitro and In Vivo Evidence for a Putative Role in the Prevention and Treatment of IBD. Nutrients 2022; 15:nu15010031. [PMID: 36615689 PMCID: PMC9824272 DOI: 10.3390/nu15010031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of intestinal disorders, of unknown etiology, characterized by chronic inflammation within the gut. They are gradually becoming critical because of the increasing incidence worldwide and improved diagnosis. Due to the important side effects observed during conventional therapy, natural bioactive components are now under intense investigation for the prevention and treatment of chronic illnesses. The Brassicaceae family comprises vegetables widely consumed all over the world. In recent decades, a growing body of literature has reported that extracts from the Brassicaceae family and their purified constituents have anti-inflammatory properties, which has generated interest from both the scientific community and clinicians. In this review, data from the literature are scrutinized and concisely presented demonstrating that Brassicaceae may have anti-IBD potential. The excellent biological activities of Brassicacea are widely attributable to their ability to regulate the levels of inflammatory and oxidant mediators, as well as their capacity for immunomodulatory regulation, maintenance of intestinal barrier integrity and intestinal flora balance. Possible future applications of bioactive-derived compounds from Brassicaceae for promoting intestinal health should be investigated.
Collapse
Affiliation(s)
- Adele Cicio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, ed 16, 90128 Palermo, Italy
| | - Rosa Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, ed 16, 90128 Palermo, Italy
| | - Maria Grazia Zizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, ed 16, 90128 Palermo, Italy
- ATeN (Advanced Technologies Network) Center, Viale delle Scienze, University of Palermo, 90128 Palermo, Italy
- Correspondence:
| |
Collapse
|