1
|
Hao Y, Lin X, Liu W, Jiang T, Zhang X, Yang S, Huang Y, Lai W, Fu C, Zhang Z. Development of nanofiber facial mask inspired by the multi-function of dried ginger (Zingiberis Rhizoma) essential oil. Sci Rep 2025; 15:402. [PMID: 39747620 PMCID: PMC11697445 DOI: 10.1038/s41598-024-84571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
Plant extracts, especially herbal extracts, are in line with the cosmetics development trend of natural and safe in today's world. Dried ginger essential oil (DGEO) is a fragrant oily liquid extracted from the dried roots of Zingiber officinale Rosc. This research investigated DGEO could effectively inhibit Staphylococcus aureus and Propionibacterium acnes. And delay skin aging in mice by down-regulating the expression of TNF-α and the production of MMP-1. These indicates that DGEO has antibacterial and anti-aging effects, and has the potential in beauty and skin care. However, DGEO is easy to volatilize, so it is lack of stability, and the application of DGEO is greatly limited. Therefore, we aim to improve the stability of DGEO and expand its application in facial mask. To achieve this, DGEO was firstly complexed with the β-cyclodextrin (β-CD) to prepare DGEO-β-CD-IC. Then, electrospinning was used to make DGEO-βCD-IC into a nanofiber facial mask. In this process, we found that the thermal stability of DGEO-βCD-IC was significantly improved, and the degradation process was slower than that of physical mixture. During the preparation of the nanofiber mask, DGEO did not undergo a chemical reaction. And the fibers of facial mask were evenly distributed, with smooth surfaces and tight structures. Its diameter was between 90 and 110 nm. And the facial mask had good hydrophilic performance and moisturizing efficacy. It could increase the skin water content by 47.82% on average. What's more, the safety tests showed that the facial mask was mild and safe. These results show that we improve the stability of DGEO and successfully develop a promising application prospects nanofiber mask. This work may enrich the use of herbal extracts in skincare products.
Collapse
Affiliation(s)
- Yiwen Hao
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Xia Lin
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Wenwen Liu
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Tinghongyang Jiang
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Xing Zhang
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Shasha Yang
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - You Huang
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Wenjing Lai
- Chengdu Institute of Food Inspection, Chengdu, China.
| | - Chaomei Fu
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.
| | - Zhen Zhang
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.
| |
Collapse
|
2
|
Quintana Soares Lopes L, Fortes Guerim PH, Maldonado ME, Wagner R, Hadlich Xavier AC, Gutknecht da Silva JL, Bittencourt da Rosa Leal D, de Freitas Daudt N, Christ Vianna Santos R, Kolling Marquezan P. Chemical composition, cytotoxicity, antimicrobial, antibiofilm, and anti-quorum sensing potential of Mentha Piperita essential oil against the oral pathogen Streptococcus mutans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:824-835. [PMID: 38984907 DOI: 10.1080/15287394.2024.2375731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Dental caries is a highly prevalent oral disease affecting billions of individuals globally. The disease occurs chemically as a result of breakdown of the tooth surface attributed to metabolic activity in colonizing biofilm. Biofilms, composed of exopolysaccharides and proteins, protect bacteria like Streptococcus mutans, which is notable for its role in tooth decay due to its acid-producing abilities. While various antimicrobial agents may prevent biofilm formation, these drugs often produce side effects including enamel erosion and taste disturbances. This study aimed to examine utilization of the Mentha piperita essential oil as a potential antibiofilm activity agent against S. mutans. M. piperita oil significantly (1) reduced bacterial biofilm, (2) exhibited a synergistic effect when combined with chlorhexidine, and (3) did not induce cell toxicity. Chemical analysis identified the essential oil with 99.99% certainty, revealing menthol and menthone as the primary components, constituting approximately 42% and 26%, respectively. Further, M. piperita oil eradicated preformed biofilms and inhibited biofilm formation at sub-inhibitory concentrations. M. piperita oil also interfered with bacterial quorum sensing communication and did not produce any apparent cell toxicity in immortalized human keratinocytes (HaCaT). M. piperita represented an alternative substance for combating S. mutans and biofilm formation and a potential combination option with chlorhexidine to minimize side effects. An in-situ performance assessment requires further studies.
Collapse
Affiliation(s)
- Leonardo Quintana Soares Lopes
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Laboratory of Oral Microbiology Research, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Pedro Henrique Fortes Guerim
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Laboratory of Oral Microbiology Research, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Maria Eduarda Maldonado
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Laboratory of Oral Microbiology Research, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Roger Wagner
- Department of Food Science and Technology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul State, Brazil
| | - Ana Carolina Hadlich Xavier
- Department of Food Science and Technology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul State, Brazil
| | - Jean Lucas Gutknecht da Silva
- Laboratory of Experimental and Applied Immunobiology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Daniella Bittencourt da Rosa Leal
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Laboratory of Experimental and Applied Immunobiology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Natália de Freitas Daudt
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Roberto Christ Vianna Santos
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Patrícia Kolling Marquezan
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Laboratory of Oral Microbiology Research, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
Al-Mohammadi AR, Abdel-Shafi S, Moustafa AH, Fouad N, Enan G, Ibrahim RA. Potential Use and Chemical Analysis of Some Natural Plant Extracts for Controlling Listeria spp. Growth In Vitro and in Food. Foods 2024; 13:2915. [PMID: 39335846 PMCID: PMC11431611 DOI: 10.3390/foods13182915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Listeria are Gram-negative intracellular foodborne pathogens that can cause invasive infections with high mortality rates. In this work, the antibacterial activity of ten essential oils, infusion extracts, and decoction extracts of some medicinal plants was tested against Listeria monocytogenes and listeria ivanovii strains. The effects of different physical conditions including temperature, pH, sodium chloride, and some organic acids were studied. The results showed that the water extracts gave the maximum bacterial inhibition, while ethanolic extract was inactive against the tested Listeria spp. The antibiotic sensitivity of L. monocytogenes LMG10470 and L. ivanovii LMZ11352 was tested against five antibiotics including imipenem, levofloxacin, amikacin, ampicillin, and amoxicillin. Imipenem was the most effective antibiotic, resulting in inhibition zones of 40 mm and 31 mm for L. monocytogenes and L. ivanovii, respectively. When imipenem mixed with Syzygium aromaticum oil, Salvia officinalis oil, Pimpinella anisum infusion, and Mentha piperita infusion each, the water extract of Moringa oleifera leaves and seeds against LMG10470 and LMZ11352 resulted in broader antibacterial activity. The antimicrobial activity of both Pimpinella anisum and Mentha piperita plant extracts is related to a variety of bioactive compounds indicated by gas chromatography-mass spectrometry analysis of these two plant extracts. These two plant extracts seemed to contain many chemical compounds elucidated by gas chromatography-mass spectrometry (GC-MS) and infrared radiation spectra. These compounds could be classified into different chemical groups such as ethers, heterocyclic compounds, aromatic aldehydes, condensed heterocyclic compounds, ketones, alicyclic compounds, aromatics, esters, herbicides, saturated fatty acids, and unsaturated fatty acids. The use of these natural compounds seems to be a useful technological adjuvant for the control of Listeria spp. in foods.
Collapse
Affiliation(s)
| | - Seham Abdel-Shafi
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.-S.); (N.F.); (G.E.)
| | - Ahmed H. Moustafa
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
| | - Nehal Fouad
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.-S.); (N.F.); (G.E.)
| | - Gamal Enan
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.-S.); (N.F.); (G.E.)
| | - Rehab A. Ibrahim
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.-S.); (N.F.); (G.E.)
| |
Collapse
|
4
|
Spréa RM, Caleja C, Finimundy TC, Calhelha RC, Pires TCSP, Amaral JS, Prieto MA, Ferreira ICFR, Pereira E, Barros L. Chemical and Bioactive Evaluation of Essential Oils from Edible and Aromatic Mediterranean Lamiaceae Plants. Molecules 2024; 29:2827. [PMID: 38930892 PMCID: PMC11206263 DOI: 10.3390/molecules29122827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The Lamiaceae family, which includes several well-known aromatic plants, is scientifically relevant due to its essential oils (EOs). In this work, four EOs from Mediterranean species, namely Origanum vulgare L., Rosmarinus officinalis L., Salvia officinalis L., and Thymus vulgaris L., were evaluated for their volatile profiles and the biological activity in vitro to assess their potential use in the food and cosmetic sector. GC/MS analysis revealed dominant compounds, such as carvacrol, thymol, and eucalyptol. Regarding biological action, the samples exhibited antioxidant, cytotoxic, anti-inflammatory, antimicrobial, and antifungal activities, with O. vulgare and T. officinalis standing out. T. vulgaris showed the lowest EC50 in the reducing power assay, and O. vulgare had the lowest EC50 in the DPPH assay. Most EOs also displayed excellent anti-inflammatory responses and antifungal properties, with O. vulgare and T. vulgaris also demonstrating antibacterial activity. All EOs from Mediterranean species showed cytotoxicity against tumoral cell lines. Overall, the selected EOs stood out for their interesting bioactivities, with the obtained results underscoring their potential as natural preservatives and bioactive agents in various industrial applications, including food, pharmaceuticals, and cosmetics.
Collapse
Affiliation(s)
- Rafael M. Spréa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (R.M.S.); (C.C.); (T.C.F.); (R.C.C.); (J.S.A.); (I.C.F.R.F.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, 36310 Vigo, Spain
| | - Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (R.M.S.); (C.C.); (T.C.F.); (R.C.C.); (J.S.A.); (I.C.F.R.F.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Tiane C. Finimundy
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (R.M.S.); (C.C.); (T.C.F.); (R.C.C.); (J.S.A.); (I.C.F.R.F.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (R.M.S.); (C.C.); (T.C.F.); (R.C.C.); (J.S.A.); (I.C.F.R.F.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Tânia C. S. P. Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (R.M.S.); (C.C.); (T.C.F.); (R.C.C.); (J.S.A.); (I.C.F.R.F.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Joana S. Amaral
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (R.M.S.); (C.C.); (T.C.F.); (R.C.C.); (J.S.A.); (I.C.F.R.F.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Miguel A. Prieto
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, 36310 Vigo, Spain
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (R.M.S.); (C.C.); (T.C.F.); (R.C.C.); (J.S.A.); (I.C.F.R.F.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Eliana Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (R.M.S.); (C.C.); (T.C.F.); (R.C.C.); (J.S.A.); (I.C.F.R.F.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (R.M.S.); (C.C.); (T.C.F.); (R.C.C.); (J.S.A.); (I.C.F.R.F.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
5
|
Puig-Herreros C, Sanz JL, García-Bernal D, Rodríguez-Lozano FJ, Murcia L, Forner L, Ghilotti J, Oñate-Sánchez RE, López-García S. Comparative Cytotoxicity of Menthol and Eucalyptol: An In Vitro Study on Human Gingival Fibroblasts. Pharmaceutics 2024; 16:521. [PMID: 38675182 PMCID: PMC11054097 DOI: 10.3390/pharmaceutics16040521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to assess the influence of eucalyptol and menthol on the cell viability, migration, and reactive oxygen species production of human gingival fibroblasts (GFs) in vitro. Three different concentrations of eucalyptol and menthol were prepared following ISO 10993-5 guidelines (1, 5, and 10 mM). GFs were isolated from extracted teeth from healthy donors. The following parameters were assessed: cell viability via MTT, Annexin-V-FITC and 7-AAD staining, and IC50 assays; cell migration via horizontal scratch wound assay; and cell oxidative stress via reactive oxygen species assay. Data were analyzed using one-way ANOVA and Tukey's post hoc test. Statistical significance was established at p < 0.05. Eucalyptol and Menthol exhibited high cytotoxicity on gingival fibroblasts, as evidenced by cytotoxicity assays. Eucalyptol showed lower levels of cytotoxicity than menthol, compared to the control group. The cytotoxicity of the tested substances increased in a concentration-dependent manner. The same occurred in a time-dependent manner, although even 10 min of exposure to the tested substances showed a high cytotoxicity to the GFs. Commercially available products for oral application with these substances in their composition should be tested for cytotoxicity before their use.
Collapse
Affiliation(s)
- Clara Puig-Herreros
- Speech Therapy University Clinic, Department of Basic Psychology, Universitat de València, 46010 Valencia, Spain
| | - José Luis Sanz
- Departament d’Estomatologia, Facultat de Medicina i Odontologia, Universitat de València, 46010 Valencia, Spain (S.L.-G.)
| | - David García-Bernal
- Department of Biochemistry, Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain;
- Biomedical Research Institute (IMIB), 30120 Murcia, Spain
| | - Francisco Javier Rodríguez-Lozano
- Biomedical Research Institute (IMIB), 30120 Murcia, Spain
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30008 Murcia, Spain
| | - Laura Murcia
- Department of Health Sciences, Catholic University San Antonio of Murcia, 30107 Murcia, Spain
| | - Leopoldo Forner
- Departament d’Estomatologia, Facultat de Medicina i Odontologia, Universitat de València, 46010 Valencia, Spain (S.L.-G.)
| | - James Ghilotti
- Departament d’Estomatologia, Facultat de Medicina i Odontologia, Universitat de València, 46010 Valencia, Spain (S.L.-G.)
| | - Ricardo E. Oñate-Sánchez
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30008 Murcia, Spain
| | - Sergio López-García
- Departament d’Estomatologia, Facultat de Medicina i Odontologia, Universitat de València, 46010 Valencia, Spain (S.L.-G.)
| |
Collapse
|
6
|
Rossato Viana A, Eduardo Lago Londero J, Pinheiro PN, Acosta P, Duailibe Silva L, Jacob-Lopes E, Ferreira Ourique A, Zepka LQ, Bohn Rhoden CR, Passaglia Schuch A, Franco C. Phytochemical analysis of carotenoid profile in Mentha piperita and Artemisia vulgaris: cytotoxicity in tumoral cells and evaluation of plasmid DNA cleavage. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:199-214. [PMID: 38073506 DOI: 10.1080/15287394.2023.2291513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Several medicinal plants have been administered to cancer patients attributed to their anticarcinogenic and chemoprotective properties, in addition to lower toxicity compared to traditional therapies. The aim was to investigate the antioxidant properties and carotenoid composition of aqueous extracts of Mentha piperita or Artemisia vulgaris which were previously found to exert beneficial effects on human health through diet. aqueous extracts exhibited potent antioxidant activity. A diversity of carotenoids was identified in these extracts using HPLC-PDA-MS/MS. Both extracts contained predominantly all-trans-lutein as the main component within this class. In order to investigate antioxidant properties, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) techniques were used. The (3-4,5 dimethylthiazol-2, 5 diphenyl tetrazolium bromide) (MTT) and Crystal Violet assays assessed cellular cytotoxicity. Assessments of presence of reactive species were carried out following exposure of oral squamous cell carcinoma cell line (SCC-4) to various aqueous extracts of M piperita or A vulgaris utilizing dichlorofluorescein diacetate (DCFH-DA) and nitric oxide (NO) assays. Exposure to these extracts induced severe cytotoxic effects, which led to investigation of the biochemical and molecular mechanisms underlying this observed effect. Data demonstrated that both solutions induced oxidative stress and DNA damage, especially at higher concentrations using agarose gel subjected to electrophoresis. It is known that exposure to excess amounts of antioxidants results in a prooxidant effect which is beneficial in cancer therapy. Further, the extracts were found to reduce viability of SCC-4 in culture, indicating that this antitumoral activity may be of therapeutic importance and requires further study.
Collapse
Affiliation(s)
- Altevir Rossato Viana
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa-Maria, RS, Brazil
| | - James Eduardo Lago Londero
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa-Maria, RS, Brazil
| | - Pricila Nass Pinheiro
- Department of Technology and Food Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Patricia Acosta
- Department of Technology and Food Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Larissa Duailibe Silva
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa-Maria, RS, Brazil
| | - Eduardo Jacob-Lopes
- Department of Technology and Food Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | | | - Leila Queiroz Zepka
- Department of Technology and Food Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Cristiano Rodrigo Bohn Rhoden
- Nanosciences Postgraduate Program, Franciscan University (UFN), Santa Maria, RS, Brazil
- Laboratory of Nanoestructurated Magnetic Materials - LaMMaN, Santa Maria, RS, Brazil
| | - André Passaglia Schuch
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa-Maria, RS, Brazil
| | - Camila Franco
- Master's in Health and Life Sciences, Franciscan University (UFN), Santa Maria, RS, Brazil
| |
Collapse
|
7
|
Hudz N, Kobylinska L, Pokajewicz K, Horčinová Sedláčková V, Fedin R, Voloshyn M, Myskiv I, Brindza J, Wieczorek PP, Lipok J. Mentha piperita: Essential Oil and Extracts, Their Biological Activities, and Perspectives on the Development of New Medicinal and Cosmetic Products. Molecules 2023; 28:7444. [PMID: 37959863 PMCID: PMC10649426 DOI: 10.3390/molecules28217444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
This review aims to analyze Mentha piperita L. as a potential raw material for the development of new health-promoting products (nutraceuticals, cosmetics, and pharmaceutical products). A lot of scientific publications were retrieved from the Scopus, PubMed, and Google Scholar databases which enable the study and generalization of the extraction procedures, key biologically active compounds of essential oil and extracts, biological properties, and therapeutic potential of M. piperita, along with perspectives on the development of its dosage forms, including combinations of synthetic active substances and herbal preparations of M. piperita. The results of this review indicate that M. piperita is a source rich in phytoconstituents of different chemical nature and can be regarded as a source of active substances to enhance health and to develop medicinal products for complementary therapy of various conditions, especially those related with oxidant stress, inflammation, and moderate infections. Essential oil has a broad spectrum of activities. Depending on the test and concentration, this essential oil has both anti- and prooxidant properties. Gram-positive bacteria are more sensitive to the essential oil of M. piperita than Gram-negative ones. This review also considered some facets of the standardization of essential oil and extracts of M. piperita. Among the identified phenolics of extracts were caffeic acid, rosmarinic acid, eriocitrin, luteolin derivates (luteolin-7-O-rutinoside, luteolin-7-O-glucoronide), and hesperidin. The concentration of these phenolics depends on the solvent used. This review also considered the relationships between the chemical component and biological activity. The results showed that the essential oil and extracts reduced inflammation in vitro by inhibiting the production of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), and in vivo by reducing the paw edema induced using carrageenan injection in rats. Therefore, herbal preparations of M. piperita are promising medicinal and cosmetic preparations for their usage in skincare and oral cavity care products with antimicrobial, anti-inflammatory, and wound-healing properties. This plant can also be regarded as a platform for the development of antibacterial preparations and combined anti-inflammatory and cardioprotective medicinal products (synthetic active substances plus herbal preparations). This review could be considered for the justification of the composition of some medicinal products during their pharmaceutical development for writing a registration dossier in the format of Common Technical Document.
Collapse
Affiliation(s)
- Nataliia Hudz
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
- Department of Drug Technology and Biopharmacy, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Lesya Kobylinska
- Department of Biochemistry, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Katarzyna Pokajewicz
- Department of Analytical Chemistry, University of Opole, 45-052 Opole, Poland; (K.P.); (P.P.W.)
| | - Vladimira Horčinová Sedláčková
- Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia; (V.H.S.); (J.B.)
| | - Roman Fedin
- Department of Pharmacy and Biology, Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies of Lviv, 79010 Lviv, Ukraine;
| | - Mariia Voloshyn
- Department of Foreign Languages, Lviv Polytechnic National University, 79000 Lviv, Ukraine; (M.V.); (I.M.)
| | - Iryna Myskiv
- Department of Foreign Languages, Lviv Polytechnic National University, 79000 Lviv, Ukraine; (M.V.); (I.M.)
| | - Ján Brindza
- Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia; (V.H.S.); (J.B.)
| | - Piotr Paweł Wieczorek
- Department of Analytical Chemistry, University of Opole, 45-052 Opole, Poland; (K.P.); (P.P.W.)
| | - Jacek Lipok
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
| |
Collapse
|
8
|
Yun SE, Choi BBR, Nam SH, Kim GC. Antimicrobial Effects of Edible Mixed Herbal Extracts on Oral Microorganisms: An In Vitro Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1771. [PMID: 37893489 PMCID: PMC10608150 DOI: 10.3390/medicina59101771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: The oral cavity is inhabited by pathogenic bacteria, whose growth can be inhibited by synthetic oral drugs, including antibiotics and other chemical compounds. Natural antimicrobial substances that elicit fewer negative side effects may serve as alternatives to synthetic agents for long-term use. Thus, the aim of this study was to evaluate the effects of edible mixed herbal extracts on the growth of oral pathogenic bacteria. Materials and Methods: The yield of each herbal extract was as follows: 5% Schizonepeta tenuifolia Briq (STB), 10.94% Mentha piperascens (MP), 5.47% Acanthopanax sessiliflorus Seem (AS), and 10.66% Glycyrrhiza uralensis (GU). The herbal extracts used included 0.5 mg/mL STB, 1.5 mg/mL MP, 1.5 mg/mL AS, and 2.0 mg/mL GU. Antimicrobial tests, morphological analyses (using scanning electron microscopy), microbial surface hydrophobicity measurements, and oral malodor reduction tests were performed using each extract. Statistical analyses were performed with IBM® SPSS® (version 24), using paired t-tests. Results: The mixed herbal extracts significantly inhibited the growth of Streptococcus mutans, Enterococcus faecalis, Candida albicans, and Porphyromonas gingivalis compared to the control (p < 0.001). Scanning electron microscopy results further revealed altered cellular morphology in the groups treated with the mixed herbal extracts. Additionally, the hydrophobicity assay results showed that the mixed herbal extracts reduced the oral adhesion capacities of bacteria (p < 0.001). Administration of the mixed herbal extracts also reduced the levels of volatile sulfur compounds, the main contributors to oral malodor (p < 0.001). Conclusions: Edible mixed herbal extracts can effectively eliminate oral pathogens and may be useful for improving oral health. The herbal extracts used were effective against all species of oral pathogens studied in this report.
Collapse
Affiliation(s)
- Se-Eun Yun
- Corporate Affiliated Research Institute, Feagle Co., Ltd., Yangsan 50561, Republic of Korea; (S.-E.Y.); (B.-B.r.C.)
| | - Byul-Bo ra Choi
- Corporate Affiliated Research Institute, Feagle Co., Ltd., Yangsan 50561, Republic of Korea; (S.-E.Y.); (B.-B.r.C.)
| | - Seoul-Hee Nam
- Department of Dental Hygiene, Kangwon National University, Samcheok 25949, Republic of Korea;
| | - Gyoo-Cheon Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
9
|
Giuliani C, Moretti RM, Bottoni M, Santagostini L, Fico G, Montagnani Marelli M. The Leaf Essential Oil of Myrtus communis subsp. tarentina (L.) Nyman: From Phytochemical Characterization to Cytotoxic and Antimigratory Activity in Human Prostate Cancer Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:1293. [PMID: 36986980 PMCID: PMC10056649 DOI: 10.3390/plants12061293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
The aim of this study was to investigate the chemical profile and the cytotoxic activity in two castration-resistant prostate cancer (CRPC) cell lines of the leaf essential oil in Myrtus communis subsp. tarentina (L.) Nyman (EO MT), which was cultivated at the Ghirardi Botanical Garden (Toscolano Maderno, Brescia, Italy). The leaves were air-dried and extracted by hydrodistillation with a Clevenger-type apparatus, and the EO profile was characterized by GC/MS. For the cytotoxic activity investigation, we analyzed the cell viability by MTT assay, and the apoptosis induction by Annexin V/propidium iodide assay/Western blot analysis of cleaved caspase 3 and cleaved PARP proteins. Moreover, the cellular migration was analyzed by Boyden's chamber assay and the distribution of actin cytoskeleton filaments by immunofluorescence. We identified 29 total compounds; the main compound classes were oxygenated monoterpenes, monoterpene hydrocarbons, and sesquiterpenes. The main constituents were α-pinene, α-humulene, α-terpineol, durohydroquinon, linalool, geranyl acetate, and β-caryophyllene. We found that EO MT was able to reduce cellular viability, activating an apoptotic process, and to decrease the migratory capacity of CRPC cells. These results suggest that it might be interesting to further investigate the effects of single compounds present in EO MT for their possible use in prostate cancer treatment.
Collapse
Affiliation(s)
- Claudia Giuliani
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 32, 20132 Milan, Italy
- Ghirardi Botanical Garden, Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Martina Bottoni
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 32, 20132 Milan, Italy
- Ghirardi Botanical Garden, Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Laura Santagostini
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Gelsomina Fico
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 32, 20132 Milan, Italy
- Ghirardi Botanical Garden, Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
10
|
Azadi S, Osanloo M, Zarenezhad E, Farjam M, Jalali A, Ghanbariasad A. Nano-scaled emulsion and nanogel containing Mentha pulegium essential oil: cytotoxicity on human melanoma cells and effects on apoptosis regulator genes. BMC Complement Med Ther 2023; 23:6. [PMID: 36624422 PMCID: PMC9830879 DOI: 10.1186/s12906-023-03834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Topical drug delivery using nanoemulsions and nanogels is a promising approach to treating skin disorders such as melanoma. METHODS In this study, the chemical composition of Mentha pulegium essential oil with five major compounds, including pulegone (68.11%), l-menthone (8.83%), limonene (2.90%), iso-pulegone (2.69%), and iso-menthone (1.48%) was first identified using GC-MS (Gas chromatography-Mass Spectrometry) analysis. Afterward, a nano-scaled emulsion containing the essential oil with a droplet size of 7.70 ± 1 nm was prepared. Nanogel containing the essential oil was then prepared by adding (2% w/v) carboxymethyl cellulose to the nano-scaled emulsion. Moreover, the successful loading of M. pulegium essential oil in the nano-scaled emulsion and nanogel was confirmed using ATR-FTIR (Attenuated total reflectance-Fourier Transform InfraRed) analysis. Then, human A375 melanoma cells were treated with different concentrations of samples, the MTT assay evaluated cell viability, and cell apoptosis was confirmed by flow cytometry. In addition, the expression of apoptotic and anti-apoptotic genes, including Bax and Bcl-2, was evaluated using the qPCR (quantitative Polymerase Chain Reaction) technique. RESULTS The results showed that cell viability was reduced by 90 and 45% after treatment with 300 μg/mL of the nanogel and nano-scaled emulsion. As confirmed by flow cytometry, this effect was mediated by apoptosis. Furthermore, gene expression analysis showed up-regulation of Bax and down-regulation of Bcl-2 genes. Therefore, the prepared nanogel, with high efficacy, could be considered a potent anticancer agent for supplementary medicine and in vivo research.
Collapse
Affiliation(s)
- Sareh Azadi
- grid.411135.30000 0004 0415 3047Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- grid.411135.30000 0004 0415 3047Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mojtaba Farjam
- grid.411135.30000 0004 0415 3047Department of Pharmacology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Akram Jalali
- grid.411950.80000 0004 0611 9280Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Ghanbariasad
- grid.411135.30000 0004 0415 3047Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
11
|
Al-Mijalli SH, Mrabti NN, Ouassou H, Sheikh RA, Abdallah EM, Assaggaf H, Bakrim S, Alshahrani MM, Awadh AAA, Qasem A, Attar A, Lee LH, Bouyahya A, Goh KW, Ming LC, Mrabti HN. Phytochemical Variability, In Vitro and In Vivo Biological Investigations, and In Silico Antibacterial Mechanisms of Mentha piperita Essential Oils Collected from Two Different Regions in Morocco. Foods 2022; 11:3466. [PMID: 36360079 PMCID: PMC9658668 DOI: 10.3390/foods11213466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2023] Open
Abstract
The objective of this work is to explore the phytochemical profile of Mentha piperita essential oils (MPEO) collected from two different Moroccan regions using gas chromatography-mass spectrophotometer (GC-MS) and to investigate their antioxidant, anti-inflammatory, antidiabetic and, antimicrobial effects using in vivo and in vitro assays. The chemical constituent of MPEO from the Azrou zone is dominated by carvone (70.25%), while MPEO from the Ouazzane zone is rich in Menthol (43.32%) and Menthone (29.4%). MPEO from Ouezzane showed higher antioxidant activity than EO from Azrou. Nevertheless, EO from Ouezzane considerably inhibited 5-Lipoxygenase (IC50 = 11.64 ± 0.02 µg/mL) compared to EO from Azro (IC50 = 23.84 ± 0.03 µg/mL). Both EOs from Azrou and Ouazzane inhibited the α-amylase activity in vitro, with IC50 values of 131.62 ± 0.01 µg/mL and 91.64 ± 0.03 µg/mL, respectively. The EOs were also tested for minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The discdiffusion test revealed that MPEOs from both regions have significant antibacterial efficacy, and MPEOs from the north region showed the highest effect. The gram-positive bacteria were the most susceptible organisms. The MIC concentrations were in the range of 0.05 to 6.25 mg/mL, and the MBC concentrations were within 0.05-25.0 mg/mL. The MBC/MIC index indicated that MPEO has strong bactericidal effects.
Collapse
Affiliation(s)
- Samiah Hamad Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nidal Naceiri Mrabti
- Computer Chemistry and Modeling Team, Laboratory of Materials, Modeling and Environmental Engineering (LIMME), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University (USMBA), BP 1796, Atlas, Fez 30000, Morocco
| | - Hayat Ouassou
- Faculty of Sciences, University Mohammed First, Boulevard Mohamed VI BP 717, Oujda 60000, Morocco
| | - Ryan A. Sheikh
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Emad M. Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Ahmed Qasem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ammar Attar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 6203, Morocco
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Long Chiau Ming
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Hanae Naceiri Mrabti
- Laboratoires TBC, Faculty of Pharmaceutical and Biological Sciences, B.P. 8359006 Lille, France
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat BP 6203, Morocco
| |
Collapse
|