1
|
Park H, He H, Yan X, Liu X, Scrutton NS, Chen GQ. PHA is not just a bioplastic! Biotechnol Adv 2024; 71:108320. [PMID: 38272380 DOI: 10.1016/j.biotechadv.2024.108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Polyhydroxyalkanoates (PHA) have evolved into versatile biopolymers, transcending their origins as mere bioplastics. This extensive review delves into the multifaceted landscape of PHA applications, shedding light on the diverse industries that have harnessed their potential. PHA has proven to be an invaluable eco-conscious option for packaging materials, finding use in films foams, paper coatings and even straws. In the textile industry, PHA offers a sustainable alternative, while its application as a carbon source for denitrification in wastewater treatment showcases its versatility in environmental remediation. In addition, PHA has made notable contributions to the medical and consumer sectors, with various roles ranging from 3D printing, tissue engineering implants, and cell growth matrices to drug delivery carriers, and cosmetic products. Through metabolic engineering efforts, PHA can be fine-tuned to align with the specific requirements of each industry, enabling the customization of material properties such as ductility, elasticity, thermal conductivity, and transparency. To unleash PHA's full potential, bridging the gap between research and commercial viability is paramount. Successful PHA production scale-up hinges on establishing direct supply chains to specific application domains, including packaging, food and beverage materials, medical devices, and agriculture. This review underscores that PHA's future rests on ongoing exploration across these industries and more, paving the way for PHA to supplant conventional plastics and foster a circular economy.
Collapse
Affiliation(s)
- Helen Park
- School of Life Sciences, Tsinghua University, Beijing 100084, China; EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M1 7DN, UK
| | - Hongtao He
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Yan
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, Beijing 101309, China
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M1 7DN, UK
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; MOE Key Lab of Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Liu Y, Shi Y, Zhang M, Han F, Liao W, Duan X. Natural polyphenols for drug delivery and tissue engineering construction: A review. Eur J Med Chem 2024; 266:116141. [PMID: 38237341 DOI: 10.1016/j.ejmech.2024.116141] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
Polyphenols, natural compounds rich in phenolic structures, are gaining prominence due to their antioxidant, anti-inflammatory, antibacterial, and anticancer properties, making them valuable in biomedical applications. Through covalent and noncovalent interactions, polyphenols can bind to biomaterials, enhancing their performance and compensating for their shortcomings. Such polyphenol-based biomaterials not only increase the efficacy of polyphenols but also improve drug stability, control release kinetics, and boost the therapeutic effects of drugs. They offer the potential for targeted drug delivery, reducing off-target impacts and enhancing therapeutic outcomes. In tissue engineering, polyphenols promote cell adhesion, proliferation, and differentiation, thus aiding in the formation of functional tissues. Additionally, they offer excellent biocompatibility and mechanical strength, essential in designing scaffolds. This review explores the significant roles of polyphenols in tissue engineering and drug delivery, emphasizing their potential in advancing biomedical research and healthcare.
Collapse
Affiliation(s)
- Yu Liu
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Yuying Shi
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Mengqi Zhang
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Feng Han
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Weifang Liao
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China.
| |
Collapse
|
3
|
Gürtler AL, Rades T, Heinz A. Electrospun fibers for the treatment of skin diseases. J Control Release 2023; 363:621-640. [PMID: 37820983 DOI: 10.1016/j.jconrel.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Skin diseases are among the most common diseases in the global population and with the growth of the aging population, they represent an increasing burden to healthcare systems worldwide. Even though they are rarely life-threatening, the suffering for those affected is high due to the visibility and physical discomfort related to these diseases. Typical symptoms of skin diseases include an inflamed, swollen or itchy skin, and therefore, there is a high demand for effective therapy options. In recent years, electrospinning has attracted considerable interest in the field of drug delivery. The technique allows producing multifunctional drug-loaded fibrous patches from various natural and synthetic polymers with fiber diameters in the nano- and micrometer range, suitable for the treatment of a wide variety of skin diseases. The great potential of electrospun fiber patches not only lies in their tunable drug release properties and the possibility to entrap a variety of therapeutic compounds, but they also provide physical and mechanical protection to the impaired skin area, exhibit a high surface area, allow gas exchange, absorb exudate due to their porous structure and are cytocompatible and biodegradable. In the case of wound healing, cell adhesion is promoted due to the resemblance of the electrospun fibers to the structure of the native extracellular matrix. This review gives an overview of the potential applications of electrospun fibers in skin therapy. In addition to the treatment of bacterial, diabetic and burn wounds, focus is placed on inflammatory diseases such as atopic dermatitis and psoriasis, and therapeutic options for the treatment of skin cancer, acne vulgaris and herpes labialis are discussed. While we aim to emphasize the great potential of electrospun fiber patches for the treatment of skin diseases with this review paper, we also highlight challenges and limitations of current research in the field.
Collapse
Affiliation(s)
- Anna-Lena Gürtler
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Azimi B, Ricci C, Macchi T, Günday C, Munafò S, Maleki H, Pratesi F, Tempesti V, Cristallini C, Bruschini L, Lazzeri A, Danti S, Günday-Türeli N. A Straightforward Method to Produce Multi-Nanodrug Delivery Systems for Transdermal/Tympanic Patches Using Electrospinning and Electrospray. Polymers (Basel) 2023; 15:3494. [PMID: 37688120 PMCID: PMC10490036 DOI: 10.3390/polym15173494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
The delivery of drugs through the skin barrier at a predetermined rate is the aim of transdermal drug delivery systems (TDDSs). However, so far, TDDS has not fully attained its potential as an alternative to hypodermic injections and oral delivery. In this study, we presented a proof of concept of a dual drug-loaded patch made of nanoparticles (NPs) and ultrafine fibers fabricated by using one equipment, i.e., the electrospinning apparatus. Such NP/fiber systems can be useful to release drugs locally through the skin and the tympanic membrane. Briefly, dexamethasone (DEX)-loaded poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) fiber meshes were decorated with rhodamine (RHO)-loaded poly(lactic-co-glycolic acid) (PLGA) NPs, with RHO representing as a second drug model. By properly tuning the working parameters of electrospinning, DEX-loaded PHBHV fibers (i.e., by electrospinning mode) and RHO-loaded PLGA NPs (i.e., by electrospray mode) were successfully prepared and straightforwardly assembled to form a TDDS patch, which was characterized via Fourier transform infrared spectroscopy and dynamometry. The patch was then tested in vitro using human dermal fibroblasts (HDFs). The incorporation of DEX significantly reduced the fiber mesh stiffness. In vitro tests showed that HDFs were viable for 8 days in contact with drug-loaded samples, and significant signs of cytotoxicity were not highlighted. Finally, thanks to a beaded structure of the fibers, a controlled release of DEX from the electrospun patch was obtained over 4 weeks, which may accomplish the therapeutic objective of a local, sustained and prolonged anti-inflammatory action of a TDDS, as is requested in chronic inflammatory conditions, and other pathological conditions, such as in sudden sensorineural hearing loss treatment.
Collapse
Affiliation(s)
- Bahareh Azimi
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via G. Giusti 9, 50121 Florence, Italy
| | - Claudio Ricci
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via G. Giusti 9, 50121 Florence, Italy
- Department of Translational Researches and New Technologies in Medicine and Surgery, via Savi 10, 56126 Pisa, Italy
| | - Teresa Macchi
- Department of Translational Researches and New Technologies in Medicine and Surgery, via Savi 10, 56126 Pisa, Italy
| | - Cemre Günday
- MyBiotech GmbH, Industriestrasse 1B, 66802 Überherrn, Germany
| | - Sara Munafò
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via G. Giusti 9, 50121 Florence, Italy
| | - Homa Maleki
- Department of Carpet, Faculty of Arts, University of Birjand, Birjand 9717434765, Iran
| | - Federico Pratesi
- Department of Translational Researches and New Technologies in Medicine and Surgery, via Savi 10, 56126 Pisa, Italy
| | - Veronika Tempesti
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via G. Giusti 9, 50121 Florence, Italy
| | - Caterina Cristallini
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via G. Giusti 9, 50121 Florence, Italy
- Institute for Chemical and Physical Processes (IPCF), National Council of Researches (CNR), via G. Moruzzi 1, 56124 Pisa, Italy
| | - Luca Bruschini
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, via Savi 10, 56126 Pisa, Italy
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via G. Giusti 9, 50121 Florence, Italy
- Institute for Chemical and Physical Processes (IPCF), National Council of Researches (CNR), via G. Moruzzi 1, 56124 Pisa, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via G. Giusti 9, 50121 Florence, Italy
- Institute for Chemical and Physical Processes (IPCF), National Council of Researches (CNR), via G. Moruzzi 1, 56124 Pisa, Italy
| | | |
Collapse
|
5
|
Zhou J, Wang L, Gong W, Wang B, Yu DG, Zhu Y. Integrating Chinese Herbs and Western Medicine for New Wound Dressings through Handheld Electrospinning. Biomedicines 2023; 11:2146. [PMID: 37626643 PMCID: PMC10452315 DOI: 10.3390/biomedicines11082146] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
In this nanotechnology era, nanostructures play a crucial role in the investigation of novel functional nanomaterials. Complex nanostructures and their corresponding fabrication techniques provide powerful tools for the development of high-performance functional materials. In this study, advanced micro-nanomanufacturing technologies and composite micro-nanostructures were applied to the development of a new type of pharmaceutical formulation, aiming to achieve rapid hemostasis, pain relief, and antimicrobial properties. Briefly, an approach combining a electrohydrodynamic atomization (EHDA) technique and reversed-phase solvent was employed to fabricate a novel beaded nanofiber structure (BNS), consisting of micrometer-sized particles distributed on a nanoscale fiber matrix. Firstly, Zein-loaded Yunnan Baiyao (YB) particles were prepared using the solution electrospraying process. Subsequently, these particles were suspended in a co-solvent solution containing ciprofloxacin (CIP) and hydrophilic polymer polyvinylpyrrolidone (PVP) and electrospun into hybrid structural microfibers using a handheld electrospinning device, forming the EHDA product E3. The fiber-beaded composite morphology of E3 was confirmed through scanning electron microscopy (SEM) images. Fourier-transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) analysis revealed the amorphous state of CIP in the BNS membrane due to the good compatibility between CIP and PVP. The rapid dissolution experiment revealed that E3 exhibits fast disintegration properties and promotes the dissolution of CIP. Moreover, in vitro drug release study demonstrated the complete release of CIP within 1 min. Antibacterial assays showed a significant reduction in the number of adhered bacteria on the BNS, indicating excellent antibacterial performance. Compared with the traditional YB powders consisting of Chinese herbs, the BNS showed a series of advantages for potential wound dressing. These advantages include an improved antibacterial effect, a sustained release of active ingredients from YB, and a convenient wound covering application, which were resulted from the integration of Chinese herbs and Western medicine. This study provides valuable insights for the development of novel multiscale functional micro-/nano-composite materials and pioneers the developments of new types of medicines from the combination of herbal medicines and Western medicines.
Collapse
Affiliation(s)
- Jianfeng Zhou
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Z.); (W.G.)
| | - Liangzhe Wang
- Department of Dermatology, Naval Special Medical Center, Naval Medical University, Shanghai 200052, China; (L.W.); (B.W.)
| | - Wenjian Gong
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Z.); (W.G.)
| | - Bo Wang
- Department of Dermatology, Naval Special Medical Center, Naval Medical University, Shanghai 200052, China; (L.W.); (B.W.)
| | - Deng-Guang Yu
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Z.); (W.G.)
| | - Yuanjie Zhu
- Department of Dermatology, Naval Special Medical Center, Naval Medical University, Shanghai 200052, China; (L.W.); (B.W.)
| |
Collapse
|
6
|
Kinyanjui Muiruri J, Chee Chuan Yeo J, Yun Debbie Soo X, Wang S, Liu H, Kong J, Cao J, Hoon Tan B, Suwardi A, Li Z, Xu J, Jun Loh X, Zhu Q. Recent Advances of Sustainable Short-chain length Polyhydroxyalkanoates (Scl-PHAs) – Plant Biomass Composites. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|