1
|
Endo K, Saruyama M, Teranishi T. Location-selective immobilisation of single-atom catalysts on the surface or within the interior of ionic nanocrystals using coordination chemistry. Nat Commun 2023; 14:4241. [PMID: 37454144 DOI: 10.1038/s41467-023-40003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Single-atom catalysts dispersed on support materials show excellent heterogeneous catalytic properties that can be tuned using the interactions between the single atoms and the support. Such interactions depend on whether the single atoms are located on the surface or within the interior of the support. However, little is known about immobilising single atoms on the surface or within the interior of supports deliberately and selectively. Herein, such location-selective placement of single atoms is achieved through the choice of metal complex precursor, solvent, and workup procedure. Using CdSe nanoplatelets as a support, a cis-[PtCl2(SO(CH3)2)2] precursor in an aprotic solvent exclusively attaches single Pt atoms on the surface of the support. In contrast, a [PtCl4]2- precursor in a protic solvent followed by amine treatment places 60% of the single Pt atoms inside the support by cation substitution. The surface-adsorbed single Pt atoms show higher stability in photocatalytic hydrogen evolution than the substituted ones, and the preclusion of substitution as internal Pt maximises the activity. Thus, this study provides a viable strategy for the structurally precise synthesis and design of single-atom catalysts.
Collapse
Affiliation(s)
- Kenichi Endo
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Masaki Saruyama
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
2
|
Xiong J, Wang X, Wu J, Han J, Lan Z, Fan J. In Situ Fabrication of N-Doped ZnS/ZnO Composition for Enhanced Visible-Light Photocatalytic H 2 Evolution Activity. Molecules 2022; 27:molecules27238544. [PMID: 36500637 PMCID: PMC9740408 DOI: 10.3390/molecules27238544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/13/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
For achieving the goal of peaking carbon dioxide emissions and achieving carbon neutrality, developing hydrogen energy, the green and clean energy, shows a promising perspective for solving the energy and ecological issues. Herein, firstly, we used the hydrothermal method to synthesize the ZnS(en)0.5 as the precursor. Then, ZnS/ZnO composite was obtained by the in situ transformation of ZnS(en)0.5 with heat treatment under air atmosphere. The composition, optical property, morphology, and structural properties of the composite were characterized by X-ray photoemission spectroscopy (XPS), Ultraviolet-visible absorption spectra (Uv-vis Abs), Scanning electron microscopy (SEM) and Transmission electron microscopy image (TEM). Moreover, the content of ZnO in ZnS/ZnO was controlled via adjustment of the calcination times. The visible-light response of ZnS/ZnO originated from the in situ doping of N during the transformation of ZnS(en)0.5 to ZnS/ZnO under heat treatment, which was verified well by XPS. Photocatalytic hydrogen evolution experiments demonstrated that the sample of ZnS/ZnO-0.5 h with 6.9 wt% of ZnO had the best H2 evolution activity (1790 μmol/h/g) under visible light irradiation (λ > 400 nm), about 7.0 and 12.3 times that of the pure ZnS and ZnO, respectively. The enhanced activities of the ZnS/ZnO composites were ascribed to the intimated hetero-interface between components and efficient transfer of photo-generated electrons from ZnS to ZnO.
Collapse
Affiliation(s)
- Jinhua Xiong
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Clean Energy Materials, Longyan University, Longyan 364000, China
- Correspondence: (J.X.); (J.F.); Tel.: +86-0597-2790525 (J.X.)
| | - Xuxu Wang
- Fujian Provincial Key Laboratory of Clean Energy Materials, Longyan University, Longyan 364000, China
| | - Jinling Wu
- Fujian Provincial Key Laboratory of Clean Energy Materials, Longyan University, Longyan 364000, China
| | - Jiaming Han
- Fujian Provincial Key Laboratory of Clean Energy Materials, Longyan University, Longyan 364000, China
| | - Zhiyang Lan
- Fujian Provincial Key Laboratory of Clean Energy Materials, Longyan University, Longyan 364000, China
| | - Jianming Fan
- Fujian Provincial Key Laboratory of Clean Energy Materials, Longyan University, Longyan 364000, China
- Correspondence: (J.X.); (J.F.); Tel.: +86-0597-2790525 (J.X.)
| |
Collapse
|
3
|
Zhang L, Chen L, Xia Y, Liang Z, Huang R, Liang R, Yan G. Modification of Polymeric Carbon Nitride with Au-CeO 2 Hybrids to Improve Photocatalytic Activity for Hydrogen Evolution. Molecules 2022; 27:7489. [PMID: 36364316 PMCID: PMC9656339 DOI: 10.3390/molecules27217489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 10/15/2023] Open
Abstract
The construction of a multi-component heterostructure for promoting the exciton splitting and charge separation of conjugated polymer semiconductors has attracted increasing attention in view of improving their photocatalytic activity. Here, we integrated Au nanoparticles (NPs) decorated CeO2 (Au-CeO2) with polymeric carbon nitride (PCN) via a modified thermal polymerization method. The combination of the interfacial interaction between PCN and CeO2 via N-O or C-O bonds, with the interior electronic transmission channel built by the decoration of Au NPs at the interface between CeO2 and PCN, endows CeAu-CN with excellent efficiency in the transfer and separation of photo-induced carriers, leading to the enhancement of photochemical activity. The amount-optimized CeAu-CN nanocomposites are capable of producing ca. 80 μmol· H2 per hour under visible light irradiation, which is higher than that of pristine CN, Ce-CN and physical mixed CeAu and PCN systems. In addition, the photocatalytic activity of CeAu-CN remains unchanged for four runs in 4 h. The present work not only provides a sample and feasible strategy to synthesize highly efficient organic polymer composites containing metal-assisted heterojunction photocatalysts, but also opens up a new avenue for the rational design and synthesis of potentially efficient PCN-based materials for efficient hydrogen evolution.
Collapse
Affiliation(s)
- Linzhu Zhang
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, China
| | - Lu Chen
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, China
| | - Yuzhou Xia
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, China
| | - Zhiyu Liang
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, China
| | - Renkun Huang
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, China
| | - Ruowen Liang
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, China
| | - Guiyang Yan
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, China
| |
Collapse
|