1
|
Malpicci D, Maver D, Rosadoni E, Colombo A, Lucenti E, Marinotto D, Botta C, Bellina F, Cariati E, Forni A. 3-Ethynyltriimidazo[1,2- a:1',2'- c:1″,2″- e][1,3,5]triazine Dual Short- and Long-Lived Emissions with Crystallization-Enhanced Feature: Role of Hydrogen Bonds and π-π Interactions. Molecules 2024; 29:1967. [PMID: 38731457 PMCID: PMC11085060 DOI: 10.3390/molecules29091967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Organic room temperature phosphorescent (ORTP) materials with stimuli-responsive, multicomponent emissive behaviour are extremely desirable for various applications. The derivative of cyclic triimidazole (TT) functionalized with an ethynyl group, TT-CCH, is isolated and investigated. The compound possesses crystallization-enhanced emission (CEE) comprising dual fluorescence and dual phosphorescence of both molecular and supramolecular origin with aggregation-induced components highly sensitive to grinding. The mechanisms involved in the emissions have been disclosed thanks to combined structural, spectroscopic and computational investigations. In particular, strong CH⋯N hydrogen bonds are deemed responsible, for the first time in the TT family, together with frequently observed π⋯π stacking interactions, for the aggregated fluorescence and phosphorescence.
Collapse
Affiliation(s)
- Daniele Malpicci
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (D.M.); (D.M.); (A.C.)
- Institute of Chemical Sciences and Technologies “Giulio Natta” (SCITEC) of CNR, Via Golgi 19, 20133 Milano, Italy; (E.L.); (D.M.)
| | - Daniele Maver
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (D.M.); (D.M.); (A.C.)
- Institute of Chemical Sciences and Technologies “Giulio Natta” (SCITEC) of CNR, Via Golgi 19, 20133 Milano, Italy; (E.L.); (D.M.)
| | - Elisabetta Rosadoni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy (F.B.)
| | - Alessia Colombo
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (D.M.); (D.M.); (A.C.)
- INSTM Research Unit of Milano, Via Golgi 19, 20133 Milano, Italy
| | - Elena Lucenti
- Institute of Chemical Sciences and Technologies “Giulio Natta” (SCITEC) of CNR, Via Golgi 19, 20133 Milano, Italy; (E.L.); (D.M.)
- INSTM Research Unit of Milano, Via Golgi 19, 20133 Milano, Italy
| | - Daniele Marinotto
- Institute of Chemical Sciences and Technologies “Giulio Natta” (SCITEC) of CNR, Via Golgi 19, 20133 Milano, Italy; (E.L.); (D.M.)
- INSTM Research Unit of Milano, Via Golgi 19, 20133 Milano, Italy
| | - Chiara Botta
- Institute of Chemical Sciences and Technologies “Giulio Natta” (SCITEC) of CNR, Via Corti 12, 20133 Milano, Italy;
| | - Fabio Bellina
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy (F.B.)
| | - Elena Cariati
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (D.M.); (D.M.); (A.C.)
- Institute of Chemical Sciences and Technologies “Giulio Natta” (SCITEC) of CNR, Via Golgi 19, 20133 Milano, Italy; (E.L.); (D.M.)
- INSTM Research Unit of Milano, Via Golgi 19, 20133 Milano, Italy
| | - Alessandra Forni
- Institute of Chemical Sciences and Technologies “Giulio Natta” (SCITEC) of CNR, Via Golgi 19, 20133 Milano, Italy; (E.L.); (D.M.)
- INSTM Research Unit of Milano, Via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
2
|
Yuan J, Wang Y, Zhou B, Xie W, Zheng B, Zhang J, Li P, Yu T, Qi Y, Tao Y, Chen R. Direct Population of Triplet States for Efficient Organic Afterglow through the Intra/Intermolecular Heavy-Atom Effect. Molecules 2024; 29:1014. [PMID: 38474526 DOI: 10.3390/molecules29051014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Organic afterglow is a fascinating phenomenon with exceptional applications. However, it encounters challenges such as low intensity and efficiency, and typically requires UV-light excitation and facile intersystem crossing (ISC) due to its spin-forbidden nature. Here, we develop a novel strategy that bypasses the conventional ISC pathway by promoting singlet-triplet transition through the synergistic effects of the intra/intermolecular heavy-atom effect in aromatic crystals, enabling the direct population of triplet excited states from the ground state. The resulting materials exhibit a bright organic afterglow with a remarkably enhanced quantum efficiency of up to 5.81%, and a significantly increased organic afterglow lifetime of up to 157 microseconds under visible light. Moreover, given the high-efficiency visible-light excitable organic afterglow emission, the potential application is demonstrated in lifetime-resolved, color-encoded, and excitation wavelength-dependent pattern encryption. This work demonstrates the importance of the direct population method in enhancing the organic afterglow performance and red-shifting the excitation wavelength, and provides crucial insights for advancing organic optoelectronic technologies that involve triplet states.
Collapse
Affiliation(s)
- Jie Yuan
- Engineering Technology Training Center, Nanjing Vocational University of Industry Technology, 1 Yangshan North Road, Nanjing 210023, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yongrong Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Binbin Zhou
- Engineering Technology Training Center, Nanjing Vocational University of Industry Technology, 1 Yangshan North Road, Nanjing 210023, China
| | - Wenjing Xie
- Engineering Technology Training Center, Nanjing Vocational University of Industry Technology, 1 Yangshan North Road, Nanjing 210023, China
| | - Botao Zheng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jingyu Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ping Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Tian Yu
- Engineering Technology Training Center, Nanjing Vocational University of Industry Technology, 1 Yangshan North Road, Nanjing 210023, China
| | - Yuanyuan Qi
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|