1
|
Faticov M, Amorim JH, Abdelfattah A, van Dijk LJA, Carvalho AC, Laforest-Lapointe I, Tack AJM. Local climate, air quality and leaf litter cover shape foliar fungal communities on an urban tree. AMBIO 2024; 53:1673-1685. [PMID: 38871928 PMCID: PMC11436615 DOI: 10.1007/s13280-024-02041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/12/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Foliar fungi on urban trees are important for tree health, biodiversity and ecosystem functioning. Yet, we lack insights into how urbanization influences foliar fungal communities. We created detailed maps of Stockholm region's climate and air quality and characterized foliar fungi from mature oaks (Quercus robur) across climatic, air quality and local habitat gradients. Fungal richness was higher in locations with high growing season relative humidity, and fungal community composition was structured by growing season maximum temperature, NO2 concentration and leaf litter cover. The relative abundance of mycoparasites and endophytes increased with temperature. The relative abundance of pathogens was lowest with high concentrations of NO2 and particulate matter (PM2.5), while saprotrophs increased with leaf litter cover. Our findings show that urbanization influences foliar fungi, providing insights for developing management guidelines to promote tree health, prevent disease outbreaks and maintain biodiversity within urban landscapes.
Collapse
Affiliation(s)
- Maria Faticov
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Frescativägen 40, 114 18, Stockholm, Sweden.
- Département de Biologie, Université de Sherbrooke, 2500, boul. de l'Université, J1K 2R, Sherbrooke, QC, Canada.
| | - Jorge H Amorim
- Swedish Meteorological and Hydrological Institute (SMHI), Folkborgsvägen 17, Norrköping, Sweden
| | - Ahmed Abdelfattah
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany
| | - Laura J A van Dijk
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Frescativägen 40, 114 18, Stockholm, Sweden
| | - Ana Cristina Carvalho
- Swedish Meteorological and Hydrological Institute (SMHI), Folkborgsvägen 17, Norrköping, Sweden
| | - Isabelle Laforest-Lapointe
- Département de Biologie, Université de Sherbrooke, 2500, boul. de l'Université, J1K 2R, Sherbrooke, QC, Canada
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Frescativägen 40, 114 18, Stockholm, Sweden
| |
Collapse
|
2
|
Muthu Narayanan M, Metali F, Shivanand P, Ahmad N. Mangrove endophytic fungi: Biocontrol potential against Rhizoctonia solani and biofertilizers for fragrant rice cultivation. Heliyon 2024; 10:e32310. [PMID: 38933943 PMCID: PMC11200349 DOI: 10.1016/j.heliyon.2024.e32310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The mangrove ecosystem has emerged as a fascinating source for exploring novel bioresources which have multiple applications in modern agriculture. This study evaluates the potential applications of mangrove endophytic fungi (MEF), such as biocontrol agents against Rhizoctonia solani and as biofertilizers for improving the yield of fragrant rice variety Malaysian Rice Quality 76 (MRQ76). Through the antagonism assays, it is observed that among the 14 MEF studied, 4 fungal isolates (Colletotrichum sp. MEFN02, Aspergillus sp. MEFN06, Annulohypoxylon sp. MEFX02 and Aspergillus sp. MEFX10) exhibited promising antagonistic effect against the pathogen R. solani compared to the chemical fungicide (Benomyl). These isolates also revealed significant production of enzymes, phytochemicals, indoleacetic acid (40.96 mg/mL) and ammonia (32.54 mg/mL) and displayed tolerance to salt and temperature stress up to 2000 mM and >40 °C respectively. Furthermore, employing the germination and pathogenicity test, inoculation of these endophytes showed lower percentage of disease severity index (DSI%) against R. solani, ranging from (24 %-46 %) in MRQ76 rice seedlings. The in-vivo experiments of soil and seed inoculation methods conducted under greenhouse conditions revealed that these endophytes enhanced plant growth (8-15 % increase) and increased crop yield (≥50 %) in comparison to control treatments. The current findings provide valuable insights into eco-friendly, cost-effective and sustainable alternatives for addressing R. solani infection and improving the agronomic performance of the fragrant rice cultivar MRQ76, contributing to food security.
Collapse
Affiliation(s)
- Manjula Muthu Narayanan
- Environmental and Life Sciences Program, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Faizah Metali
- Environmental and Life Sciences Program, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Pooja Shivanand
- Environmental and Life Sciences Program, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Norhayati Ahmad
- Environmental and Life Sciences Program, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
- Institute for Biodiversity and Environmental Research, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| |
Collapse
|
3
|
Hnamte L, Vanlallawmzuali, Kumar A, Yadav MK, Zothanpuia, Singh PK. An updated view of bacterial endophytes as antimicrobial agents against plant and human pathogens. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100241. [PMID: 39091295 PMCID: PMC11292266 DOI: 10.1016/j.crmicr.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Bacterial endophytes are a crucial component of the phytomicrobiome, playing an essential role in agriculture and industries. Endophytes are a rich source of bioactive compounds, serving as natural antibiotics that can be effective in combating antibiotic resistance in pathogens. These bacteria interact with host plants through various processes such as quorum sensing, chemotaxis, antibiosis, and enzymatic activity. The current paper focuses on how plants benefit extensively from endophytic bacteria and their symbiotic relationship in which the microbes enhance plant growth, nitrogen fixation, increase nutrient uptake, improve defense mechanisms, and act as antimicrobial agents against pathogens. Moreover, it highlights some of the bioactive compounds produced by endophytes.
Collapse
Affiliation(s)
- Lalhmangaihmawia Hnamte
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Vanlallawmzuali
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Ajay Kumar
- Amity institute of Biotechnology, Amity University, Noida-201313, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Zothanpuia
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Prashant Kumar Singh
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| |
Collapse
|
4
|
El Housni Z, Ezrari S, Radouane N, Tahiri A, Ouijja A, Errafii K, Hijri M. Evaluating Rhizobacterial Antagonists for Controlling Cercospora beticola and Promoting Growth in Beta vulgaris. Microorganisms 2024; 12:668. [PMID: 38674613 PMCID: PMC11052011 DOI: 10.3390/microorganisms12040668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Cercospora beticola Sacc. is an ascomycete pathogen that causes Cercospora leaf spot in sugar beets (Beta vulgaris L.) and other related crops. It can lead to significant yield losses if not effectively managed. This study aimed to assess rhizosphere bacteria from sugar beet soil as a biological control agent against C. beticola and evaluate their effect on B. vulgaris. Following a dual-culture screening, 18 bacteria exhibiting over 50% inhibition were selected, with 6 of them demonstrating more than 80% control. The bacteria were identified by sequencing the 16S rRNA gene, revealing 12 potential species belonging to 6 genera, including Bacillus, which was represented by 4 species. Additionally, the biochemical and molecular properties of the bacteria were characterized in depth, as well as plant growth promotion. PCR analysis of the genes responsible for producing antifungal metabolites revealed that 83%, 78%, 89%, and 56% of the selected bacteria possessed bacillomycin-, iturin-, fengycin-, and surfactin-encoding genes, respectively. Infrared spectroscopy analysis confirmed the presence of a lipopeptide structure in the bacterial supernatant filtrate. Subsequently, the bacteria were assessed for their effect on sugar beet plants in controlled conditions. The bacteria exhibited notable capabilities, promoting growth in both roots and shoots, resulting in significant increases in root length and weight and shoot length. A field experiment with four bacterial candidates demonstrated good performance against C. beticola compared to the difenoconazole fungicide. These bacteria played a significant role in disease control, achieving a maximum efficacy of 77.42%, slightly below the 88.51% efficacy attained with difenoconazole. Additional field trials are necessary to verify the protective and growth-promoting effects of these candidates, whether applied individually, combined in consortia, or integrated with chemical inputs in sugar beet crop production.
Collapse
Affiliation(s)
- Zakariae El Housni
- Laboratory of Biotechnology and Molecular Biology, Department of Biology, Faculty of Science, Moulay Ismail University, Zitoune, Meknès 50050, Morocco; (Z.E.H.); (A.O.)
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, BPS 40, Meknès 50001, Morocco;
| | - Said Ezrari
- Microbiology Unit, Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Medicine and Pharmacy Oujda, University Mohammed Premier, P.O. Box 724 Hay Al Quods, Oujda 60000, Morocco;
| | - Nabil Radouane
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco; (N.R.); (K.E.)
| | - Abdessalem Tahiri
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, BPS 40, Meknès 50001, Morocco;
| | - Abderrahman Ouijja
- Laboratory of Biotechnology and Molecular Biology, Department of Biology, Faculty of Science, Moulay Ismail University, Zitoune, Meknès 50050, Morocco; (Z.E.H.); (A.O.)
| | - Khaoula Errafii
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco; (N.R.); (K.E.)
| | - Mohamed Hijri
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco; (N.R.); (K.E.)
- Institut de Recherche en Biologie Végétale (IRBV), Département de Sciences Biologiques, Université de Montréal, Montréal, QC H1X 2B2, Canada
| |
Collapse
|
5
|
Sena L, Mica E, Valè G, Vaccino P, Pecchioni N. Exploring the potential of endophyte-plant interactions for improving crop sustainable yields in a changing climate. FRONTIERS IN PLANT SCIENCE 2024; 15:1349401. [PMID: 38571718 PMCID: PMC10988515 DOI: 10.3389/fpls.2024.1349401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
Climate change poses a major threat to global food security, significantly reducing crop yields as cause of abiotic stresses, and for boosting the spread of new and old pathogens and pests. Sustainable crop management as a route to mitigation poses the challenge of recruiting an array of solutions and tools for the new aims. Among these, the deployment of positive interactions between the micro-biotic components of agroecosystems and plants can play a highly significant role, as part of the agro-ecological revolution. Endophytic microorganisms have emerged as a promising solution to tackle this challenge. Among these, Arbuscular Mycorrhizal Fungi (AMF) and endophytic bacteria and fungi have demonstrated their potential to alleviate abiotic stresses such as drought and heat stress, as well as the impacts of biotic stresses. They can enhance crop yields in a sustainable way also by other mechanisms, such as improving the nutrient uptake, or by direct effects on plant physiology. In this review we summarize and update on the main types of endophytes, we highlight several studies that demonstrate their efficacy in improving sustainable yields and explore possible avenues for implementing crop-microbiota interactions. The mechanisms underlying these interactions are highly complex and require a comprehensive understanding. For this reason, omic technologies such as genomics, transcriptomics, proteomics, and metabolomics have been employed to unravel, by a higher level of information, the complex network of interactions between plants and microorganisms. Therefore, we also discuss the various omic approaches and techniques that have been used so far to study plant-endophyte interactions.
Collapse
Affiliation(s)
- Lorenzo Sena
- Dipartimento di Scienze della Vita, Sede Agraria, UNIMORE - Università di Modena e Reggio Emilia, Reggio Emilia, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
| | - Erica Mica
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, UPO – Università del Piemonte Orientale, Complesso San Giuseppe, Vercelli, Italy
| | - Giampiero Valè
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, UPO – Università del Piemonte Orientale, Complesso San Giuseppe, Vercelli, Italy
| | - Patrizia Vaccino
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
| | - Nicola Pecchioni
- Dipartimento di Scienze della Vita, Sede Agraria, UNIMORE - Università di Modena e Reggio Emilia, Reggio Emilia, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Foggia, Italy
| |
Collapse
|
6
|
Rungjindamai N, Jones EBG. Why Are There So Few Basidiomycota and Basal Fungi as Endophytes? A Review. J Fungi (Basel) 2024; 10:67. [PMID: 38248976 PMCID: PMC10820240 DOI: 10.3390/jof10010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
A review of selected studies on fungal endophytes confirms the paucity of Basidiomycota and basal fungi, with almost 90% attributed to Ascomycota. Reasons for the low number of Basidiomycota and basal fungi, including the Chytridiomycota, Mucoromycota, and Mortierellomycota, are advanced, including isolation procedure and media, incubation period and the slow growth of basidiomycetes, the identification of non-sporulating isolates, endophyte competition, and fungus-host interactions. We compare the detection of endophytes through culture-dependent methods and culture-independent methods, the role of fungi on senescence of the host plant, and next-generation studies.
Collapse
Affiliation(s)
- Nattawut Rungjindamai
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand
| | - E. B. Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
7
|
Chowhan P, Swarnakar S, Chakraborty AP. New report of endophytic bacterium Achromobacter xylosoxidans from root tissue of Musa spp. Mol Biol Rep 2023; 50:9179-9190. [PMID: 37776417 DOI: 10.1007/s11033-023-08789-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/30/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Cavendish (AAA) banana plant (Musa spp.) worldwide cultivated crop harbors many endophytic bacteria. Endophytic bacteria are those that live inside plant tissues without producing any visible symptoms of infection. RESULTS Endophytic bacterium (MRH 11), isolated from root tissue of Musa spp.was identified as Achromobacter xylosoxidans (ON955872) which showed positive effects in IAA production, phosphate solubilization, catalase production. A. xylosoxidans also showed in vitro antagonism against Curvularia lunata causing leaf spot disease of Cavendish (AAA) banana (G-9 variety). The GC-MS analysis of culture filtrate of A. xylosoxidans (ON955872) confirmed this finding. GC-MS analysis was carried by using two solvent etheyl acetate and chloroform and it showed several antifungal compounds. The identification of these bioactive secondary metabolites compounds was based on the peak area, retention time, molecular weight, molecular formula and antimicrobial actions. GC-MS analysis result revealed the presence of major components including Cyclododecane, 1-Octanol, Cetene, Diethyl phthalate. In vivo test to banana plants was carried out in separate field as well as in potted conditions. Appearance of leaf spots after foliar spray of spore of pathogen and reduction in leaf spots after application of bacterial suspension was found. CONCLUSION The present study has highlighted the role of endophytic bacterium as antagonist to the pathogen Curvularia lunata.
Collapse
Affiliation(s)
- Papan Chowhan
- Department of Botany, Raiganj University, Uttar Dinajpur, Raiganj, West Bengal, 733134, India
| | - Shambhu Swarnakar
- Department of Botany, Raiganj University, Uttar Dinajpur, Raiganj, West Bengal, 733134, India
| | - Arka Pratim Chakraborty
- Department of Botany, Raiganj University, Uttar Dinajpur, Raiganj, West Bengal, 733134, India.
| |
Collapse
|
8
|
Damavandi MS, Shojaei H, Esfahani BN. The anticancer and antibacterial potential of bioactive secondary metabolites derived From bacterial endophytes in association with Artemisia absinthium. Sci Rep 2023; 13:18473. [PMID: 37891400 PMCID: PMC10611800 DOI: 10.1038/s41598-023-45910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023] Open
Abstract
The continuous search for secondary metabolites in microorganisms isolated from untapped reservoirs is an effective prospective approach to drug discovery. In this study, an in-depth analysis was conducted to investigate the diversity of culturable bacterial endophytes present in the medicinal plant A. absinthium, as well as the antibacterial and anticancer potential of their bioactive secondary metabolites. The endophytic bacteria recovered from A. absinthium, were characterized via the implementation of suitable biochemical and molecular analyses. Agar well diffusion and broth microdilution were used to screen antibacterial activity. SEM was performed to assess the impact of the extracted metabolite on MRSA strain cell morphology. Apoptosis and cytotoxicity assays were used to evaluate anticancer activity against MCF7 and A549. The FTIR, GC-MS were used to detect bioactive compounds in the active solvent fraction. Of the various endophytic bacteria studied, P. aeruginosa SD01 showed discernible activity against both bacterial pathogens and malignancies. The crude ethyl acetate extract of P. aeruginosa SD01 showed MICs of 32 and 128 µg/mL for S. aureus and MRSA, respectively. SEM examination demonstrated MRSA bacterial cell lysis, hole development, and intracellular leaking. This study revealed that the crude bioactive secondary metabolite SD01 has potent anticancer activity. In this study, 2-aminoacetophenone, 1,2-apyrazine-1,4-dione, phenazine and 2-phenyl-4-cyanopyridine were the major bioactive secondary metabolites. In conclusion, our findings indicate that the bacteria recovered from A. absinthium plants and in particular, P. aeruginosa SD01 is a remarkable source of untapped therapeutic, i.e., antimicrobial and anticancer compounds.
Collapse
Affiliation(s)
- Mohammad Sadegh Damavandi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hasan Shojaei
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Bahram Nasr Esfahani
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Choudhary N, Dhingra N, Gacem A, Yadav VK, Verma RK, Choudhary M, Bhardwaj U, Chundawat RS, Alqahtani MS, Gaur RK, Eltayeb LB, Al Abdulmonem W, Jeon BH. Towards further understanding the applications of endophytes: enriched source of bioactive compounds and bio factories for nanoparticles. FRONTIERS IN PLANT SCIENCE 2023; 14:1193573. [PMID: 37492778 PMCID: PMC10364642 DOI: 10.3389/fpls.2023.1193573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/31/2023] [Indexed: 07/27/2023]
Abstract
The most significant issues that humans face today include a growing population, an altering climate, an growing reliance on pesticides, the appearance of novel infectious agents, and an accumulation of industrial waste. The production of agricultural goods has also been subject to a great number of significant shifts, often known as agricultural revolutions, which have been influenced by the progression of civilization, technology, and general human advancement. Sustainable measures that can be applied in agriculture, the environment, medicine, and industry are needed to lessen the harmful effects of the aforementioned problems. Endophytes, which might be bacterial or fungal, could be a successful solution. They protect plants and promote growth by producing phytohormones and by providing biotic and abiotic stress tolerance. Endophytes produce the diverse type of bioactive compounds such as alkaloids, saponins, flavonoids, tannins, terpenoids, quinones, chinones, phenolic acids etc. and are known for various therapeutic advantages such as anticancer, antitumor, antidiabetic, antifungal, antiviral, antimicrobial, antimalarial, antioxidant activity. Proteases, pectinases, amylases, cellulases, xylanases, laccases, lipases, and other types of enzymes that are vital for many different industries can also be produced by endophytes. Due to the presence of all these bioactive compounds in endophytes, they have preferred sources for the green synthesis of nanoparticles. This review aims to comprehend the contributions and uses of endophytes in agriculture, medicinal, industrial sectors and bio-nanotechnology with their mechanism of action.
Collapse
Affiliation(s)
- Nisha Choudhary
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Naveen Dhingra
- Department of Agriculture, Medi-Caps University, Pigdamber Road, Rau, Indore, Madhya Pradesh, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Virendra Kumar Yadav
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Rakesh Kumar Verma
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Mahima Choudhary
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Uma Bhardwaj
- Department of Biotechnology, Noida International University, Noida, U.P., India
| | - Rajendra Singh Chundawat
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Leicester, United Kingdom
| | - Rajarshi Kumar Gaur
- Department of Biotechnology, Deen Dayal Upadhyaya (D.D.U.) Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin AbdulAziz University- Al-Kharj, Riyadh, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Kashyap N, Singh SK, Yadav N, Singh VK, Kumari M, Kumar D, Shukla L, Bhardwaj N, Kumar A. Biocontrol Screening of Endophytes: Applications and Limitations. PLANTS (BASEL, SWITZERLAND) 2023; 12:2480. [PMID: 37447041 DOI: 10.3390/plants12132480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023]
Abstract
The considerable loss of crop productivity each year due to plant disease or pathogen invasion during pre- or post-harvest storage conditions is one of the most severe challenges to achieving the goals of food security for the rising global population. Although chemical pesticides severally affect the food quality and health of consumers, a large population relies on them for plant disease management. But currently, endophytes have been considered one of the most suitable biocontrol agents due to better colonization and acclimatization potential. However, a very limited number of endophytes have been used commercially as biocontrol agents. Isolation of endophytes and their screening to represent potential characteristics as biocontrol agents are considered challenging by different procedures. Through a web search using the keywords "endophytes as biocontrol agents" or "biocontrol mechanism of endophytes," we have succinctly summarised the isolation strategies and different in vitro and in vivo biocontrol screening methods of endophytic biocontrol agents in the present review. In this paper, biocontrol mechanisms of endophytes and their potential application in plant disease management have also been discussed. Furthermore, the registration and regulatory mechanism of the endophytic biocontrol agents are also covered.
Collapse
Affiliation(s)
- Nikhil Kashyap
- Department of Biotechnology, Noida International University, Greater Noida 203201, India
| | - Sandeep Kumar Singh
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Nisha Yadav
- Division of Agriculture Extension, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Vipin Kumar Singh
- Department of Botany, K.S. Saket P.G. College, Ayodhya 224123, India
| | - Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Livleen Shukla
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Nikunj Bhardwaj
- Department of Zoology, Maharaj Singh College, Maa Shakumbhari University, Saharanpur 247001, India
| | - Ajay Kumar
- Department of Botany, M.V. College, Buxar 802101, India
| |
Collapse
|
11
|
Gorai PS, Ghosh R, Ghosh S, Samanta S, Sen A, Panja S, Gond SK, Mandal NC. Management of Black Root Disease-Causing Fungus Fusarium solani CRP1 by Endophytic Bacillus siamensis CNE6 through Its Metabolites and Activation of Plant Defense Genes. Microbiol Spectr 2023; 11:e0308222. [PMID: 36744908 PMCID: PMC10101116 DOI: 10.1128/spectrum.03082-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/20/2022] [Indexed: 02/07/2023] Open
Abstract
Black root rot disease of Cicer arietinum L. is accountable for substantial loss in chickpea production worldwide. Endophytic Bacillus siamensis CNE6 has previously shown multifaceted plant growth-promoting, broad-spectrum antifungal, and chickpea plant-colonizing potential. In the present study, the strain Bacillus siamensis CNE6 was used for controlling black root rot disease caused by Fusarium solani CRP1 in chickpea. CNE6 showed strong antagonistic potential against CRP1 both in vivo and in vitro. Scanning electron microscopic studies indicated cellular deformation of CRP1 due to production of β-glucanase, protease, and other secondary metabolites. A total of five compounds were detected from the cell-free supernatant (CFS) of the ethyl acetate (EA) fraction of CNE6 through gas chromatography-mass spectrometry analysis. A confocal microscopic study demonstrated strong inhibition of biofilm formation of the pathogen CRP1 by the EA fraction of CFS of CNE6. Molecular docking analysis revealed that one compound, (2E)-6-methoxy-2-[(4-methoxyphenyl)methylidene]-2,3-dihydro-1-benzofuran-3-one, may inhibit the activity of lanosterol 14-alpha demethylase, which is involved in ergosterol biosynthesis and beta-tubulin assembling. In vivo experiments also showed the efficacy of CNE6 for increasing chickpea growth as well as upregulation of four defense genes (CHI1, PAMP, PR2B, and TF1082) upon pathogenic challenge. Thus, our results strongly suggest a positive role for CNE6 as a prospective biocontrol agent for combating Fusarium solani in chickpea. IMPORTANCE The present work was undertaken to explore an effective biocontrol agent against the destructive black root rot disease of chickpea. We have used an efficient bacterial endophyte, CNE6, which can colonize in the chickpea root system, produce secondary metabolites and enzymes to degrade pathogenic cellular integrity, inhibit pathogenic establishment by rupturing biofilm formation, and induce host immunity upon treatment. Interaction of the bacterial metabolite was also observed with lanosterol 14-alpha demethylase, which is an important component in fungal membrane functioning. Being an endophyte, Bacillus siamensis CNE6 fulfills a suitable criterion as a biocontrol agent to control black root rot disease in chickpea and has huge prospects for use commercially.
Collapse
Affiliation(s)
- Pralay Shankar Gorai
- Mycology and Plant Pathology Laboratory, Department of Botany, Visva-Bharati, Santiniketan, India
| | - Ranjan Ghosh
- Department of Botany, Bankura Sammilani College, Bankura, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Department of Biochemistry, Bose Institute, Kolkata, India
| | - Smriti Samanta
- Mycology and Plant Pathology Laboratory, Department of Botany, Visva-Bharati, Santiniketan, India
| | - Animesh Sen
- Regional Ayurveda Research Institute, Gangtok, Sikkim, India
| | - Suraj Panja
- Rice Biotechnology Laboratory, Department of Biotechnology, Visva-Bharati, Santiniketan, India
| | | | - Narayan Chandra Mandal
- Mycology and Plant Pathology Laboratory, Department of Botany, Visva-Bharati, Santiniketan, India
| |
Collapse
|