1
|
Liu H, Wang J, Yang S, Li Z, Song M, Zhang X, Crommen J, Jiang Z, Zhang T. A magnetic beads-based ligand fishing method for rapid discovery of monoterpene indoles as monoamine oxidase A inhibitors from Hunteria zeylanica. J Chromatogr A 2024; 1722:464896. [PMID: 38631224 DOI: 10.1016/j.chroma.2024.464896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
In this study, a novel magnetic bead-based ligand fishing method was developed for rapid discovery of monoterpene indoles as monoamine oxidase A inhibitors from natural products. In order to improve the screening efficiency, two different magnetic beads, i.e. amine and carboxyl terminated magnetic beads, were comprehensively compared in terms of their ability to immobilize monoamine oxidase A (MAOA), biocatalytic activity and specific adsorption rates for affinity ligands. Carboxyl terminated magnetic beads performed better for MAOA immobilization and demonstrated superior performance in ligand fishing. The MAOA immobilized magnetic beads were applied to screen novel monoamine oxidase inhibitors in an alkaloid-rich plant, Hunteria zeylanica. Twelve MAOA affinity ligands were screened out, and ten of them were identified as monoterpene indole alkaloids by HPLC-Obitrap-MS/MS. Among them, six ligands, namely geissoschizol, vobasinol, yohimbol, dihydrocorynanthenol, eburnamine and (+)-isoeburnamine which exhibited inhibitory activity against MAOA with low IC50 values. To further explore their inhibitory mechanism, enzyme kinetic analysis and molecular docking studies were conducted.
Collapse
Affiliation(s)
- Huaixin Liu
- Institute of Pharmaceutical Analysis, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jincai Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Sirui Yang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Ziwei Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, NMPA Key Laboratory for Quality Evaluation of TCM, Jinan University, Guangzhou 510632, China
| | - Min Song
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, NMPA Key Laboratory for Quality Evaluation of TCM, Jinan University, Guangzhou 510632, China
| | - Xiaoqi Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, NMPA Key Laboratory for Quality Evaluation of TCM, Jinan University, Guangzhou 510632, China
| | - Jacques Crommen
- Laboratory of Analytical Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, CIRM, University of Liege, CHU B36, B-4000, Liege, Belgium
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, NMPA Key Laboratory for Quality Evaluation of TCM, Jinan University, Guangzhou 510632, China.
| | - Tingting Zhang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Quan S, Wen M, Xu P, Chu C, Zhang H, Yang K, Tong S. Efficient screening of pancreatic lipase inhibitors from Rheum palmatum by affinity ultrafiltration-high-performance liquid chromatography combined with high-resolution inhibition profiling. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:540-551. [PMID: 38053479 DOI: 10.1002/pca.3311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
INTRODUCTION Pancreatic lipase is one of the most important key targets in the treatment of obesity. Inhibition of pancreatic lipase can effectively reduce lipid absorption and treat obesity and other related metabolic disorders. OBJECTIVES The goal of this study is the efficient screening of pancreatic lipase inhibitors in the root and rhizome of Rheum palmatum using affinity ultrafiltration-high-performance liquid chromatography (AUF-HPLC) combined with high-resolution inhibition profiling (HRIP). METHODS Potential pancreatic lipase ligands and pancreatic lipase inhibitors in ethyl acetate fraction of R. palmatum were screened using AUF-HPLC and HRIP, respectively. All screened compounds were identified by HPLC- quadrupole time-of-flight (Q-TOF)/MS. Eight compounds were screened out by both AUF-HPLC and HRIP, and six compounds were screened out by either AUF-HPLC or HRIP alone. The pancreatic lipase inhibitory activities of all screened compounds were verified by enzyme inhibition assay and molecular docking. RESULTS Five new potent pancreatic lipase inhibitors were discovered, namely procyanidin B5 3,3'-di-O-gallate (IC50 = 0.06 ± 0.01 μM), 1,6-di-O-galloyl-2-O-cinnamoyl-β-D-glucoside (IC50 = 12.83 ± 0.67 μM), 1-O-(1,3,5-trihydroxy)phenyl-2-O-galloyl-6-O-cinnamoyl-β-D-glucoside (IC50 = 17.84 ± 1.33 μM), 1,2-di-O-galloyl-6-O-cinnamoyl-β-D-glucoside (IC50 = 18.39 ± 1.52 μM), and 4-(4'-hydroxyphenyl)-2-butanone-4'-O-β-D-(2"-O-galloyl-6"-O-cinnamoyl)-glucoside (IC50 = 2.91 ± 0.40 μM). It was found that procyanidin B5 3,3'-di-O-gallate showed higher pancreatic lipase inhibitory activity than the positive control orlistat (IC50 = 0.12 ± 0.02 μM). CONCLUSION The combination of affinity ultrafiltration-high-performance liquid chromatography (AUF-HPLC) and high-resolution inhibition profiling (HRIP) could reduce the risk of false-negative screening and missed screening and could achieve more efficient screening of bioactive compounds in complex natural products.
Collapse
Affiliation(s)
- Sihua Quan
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Mengyi Wen
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Ping Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Hui Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Kai Yang
- College of Food Science and Engineering, Zhejiang University of Technology, Huzhou, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| |
Collapse
|
3
|
Fan Y, Wang J, Jian J, Wen Y, Li J, Tian H, Crommen J, Bi W, Zhang T, Jiang Z. High-throughput discovery of highly selective reversible hMAO-B inhibitors based on at-line nanofractionation. Acta Pharm Sin B 2024; 14:1772-1786. [PMID: 38572096 PMCID: PMC10985270 DOI: 10.1016/j.apsb.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 04/05/2024] Open
Abstract
Human monoamine oxidase B (hMAO-B) has emerged as a pivotal therapeutic target for Parkinson's disease. Due to adverse effects and shortage of commercial drugs, there is a need for novel, highly selective, and reversible hMAO-B inhibitors with good blood-brain barrier permeability. In this study, a high-throughput at-line nanofractionation screening platform was established with extracts from Chuanxiong Rhizoma, which resulted in the discovery of 75 active compounds, including phenolic acids, volatile oils, and phthalides, two of which were highly selective novel natural phthalide hMAO-B inhibitors that were potent, selective, reversible and had good blood‒brain permeability. Molecular docking and molecular dynamics simulations elucidated the inhibition mechanism. Sedanolide (IC50 = 103 nmol/L; SI = 645) and neocnidilide (IC50 = 131 nmol/L; SI = 207) demonstrated their excellent potential as hMAO-B inhibitors. They offset the limitations of deactivating enzymes associated with irreversible hMAO-B inhibitors such as rasagiline. In SH-SY5Y cell assays, sedanolide (EC50 = 0.962 μmol/L) and neocnidilide (EC50 = 1.161 μmol/L) exhibited significant neuroprotective effects, comparable to the positive drugs rasagiline (EC50 = 0.896 μmol/L) and safinamide (EC50 = 1.079 μmol/L). These findings underscore the potential of sedanolide as a novel natural hMAO-B inhibitor that warrants further development as a promising drug candidate.
Collapse
Affiliation(s)
- Yu Fan
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jincai Wang
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jingyi Jian
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
- KU Leuven-University of Leuven, Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, Leuven 3000, Belgium
| | - Yalei Wen
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiahao Li
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hao Tian
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jacques Crommen
- Laboratory of Analytical Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, CIRM, University of Liege, Liege B-4000, Belgium
| | - Wei Bi
- Department of Neurology, the First Affiliated Hospital of Jinan University/Clinical Neuroscience Institute, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Tingting Zhang
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Hou FB, Zhang N, Hou XD, Liu W, Fan YF, Zhu GH, Wu Y, Sun MR, Zhao B, Ge GB, Wang P. A rationally engineered specific near-infrared fluorogenic substrate of human pancreatic lipase for functional imaging and inhibitor screening. Analyst 2023; 148:2225-2236. [PMID: 37092796 DOI: 10.1039/d3an00198a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Obesity, now widespread all over the world, is frequently associated with several chronic diseases. Human pancreatic lipase (hPL) is a crucial digestive enzyme responsible for the digestion of dietary lipids in humans, and the inhibition of hPL is effective in reducing triglyceride intake and thus preventing and treating obesity. In this work, a practical sequential screening strategy was developed to construct a highly selective near-infrared fluorogenic substrate 7-STCFC for hPL. Under physiological conditions, 7-STCFC can be rapidly hydrolyzed by hPL to form 7-HTCFC, which triggers 254-fold NIR signal enhancement at 670 nm. 7-STCFC was successfully applied for the sensing and imaging of endogenous PL in living systems (including living cells, tissues and organs) with low cytotoxicity and high imaging resolution. Moreover, a high-throughput screening platform was established using 7-STCFC, and the inhibitory effects of 94 kinds of herbs toward hPL were evaluated. Among them, Pu-erh tea stood out with outstanding hPL inhibitory effects, and the inhibitory ingredients and involved inhibitory mechanism were further revealed, which strongly facilitates the discovery of novel anti-obesity agents targeting hPL. Collectively, these findings suggested that our strategy was practical to develop an isoform-specific fluorogenic substrate for a target enzyme, and 7-STCFC was a powerful tool for monitoring PL activity in complex biological systems with value for exploring physiological functions and rapid screening of inhibitors.
Collapse
Affiliation(s)
- Fan-Bin Hou
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Na Zhang
- Department of Biology, Philipps University, Karl-von-Frisch-Straße 8, Marburg, 35043, Germany
| | - Xu-Dong Hou
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wei Liu
- Department of Pharmacy, Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu-Fan Fan
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guang-Hao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yue Wu
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Meng-Ru Sun
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Bei Zhao
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ping Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
5
|
Hou FB, Zhang N, Zhu GH, Fan YF, Sun MR, Nie LL, Ge GB, Zheng YJ, Wang P. Functional Imaging and Inhibitor Screening of Human Pancreatic Lipase by a Resorufin-Based Fluorescent Probe. BIOSENSORS 2023; 13:bios13020283. [PMID: 36832049 PMCID: PMC9953885 DOI: 10.3390/bios13020283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 05/28/2023]
Abstract
Human pancreatic lipase (hPL) is a crucial digestive enzyme responsible for the digestion of dietary lipids in humans, and inhibition of hPL is effective in reducing triglyceride intake, thereby preventing and treating obesity. In this study, a series of fatty acids with different carbon chain lengths were constructed to the fluorophore resorufin based on the substrate preference of hPL. Among them, RLE was found to have the best combination of stability, specificity, sensitivity and reactivity towards hPL. Under physiological conditions, RLE can be rapidly hydrolyzed by hPL and released to resorufin, which triggered approximately 100-fold fluorescence enhancement at 590 nm. RLE was successfully applied for sensing and imaging of endogenous PL in living systems with low cytotoxicity and high imaging resolution. Moreover, a visual high-throughput screening platform was established using RLE, and the inhibitory effects of hundreds of drugs and natural products toward hPL were evaluated. Collectively, this study reports a novel and highly specific enzyme-activatable fluorogenic substrate for hPL that could serve as a powerful tool for monitoring hPL activity in complex biological systems and showcases the potential to explore physiological functions and rapid screening of inhibitors.
Collapse
Affiliation(s)
- Fan-Bin Hou
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Na Zhang
- Department of Biology, Philipps University, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Guang-Hao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Fan Fan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meng-Ru Sun
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang-Liang Nie
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue-Juan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ping Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
6
|
Chen Z, Wang J, Yuan J, Wang Z, Tu Z, Crommen J, Luo W, Guo J, Zhang T, Jiang Z. Rapid screening of neuraminidase inhibitors using an at-line nanofractionation platform involving parallel oseltamivir-sensitive/resistant neuraminidase bioassays. J Chromatogr A 2023; 1687:463693. [PMID: 36516530 DOI: 10.1016/j.chroma.2022.463693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
In this study, an advanced at-line nanofractionation based screening platform was developed to screen potential neuraminidase inhibitors (NAIs) from Lonicera japonica Thunb by involving two parallel bioassays, for determining both oseltamivir-sensitive neuraminidase (NAS) and oseltamivir-resistant neuraminidase (NAR) inhibitory activities. 20 potential NAIs with both NAS and NAR inhibitory effects were screened from Lonicera japonica Thunb and identified by mass spectrometer, including 11 phenolic acids, 8 flavonoids and one iridoid glycoside. The proposed at-line nanofractionation based screening platform for NAIs was also used to rapidly screen nine batches of water extracts of Lonicera japonica Thunb or its similar species. Clear differences in the number and content of active components were easily observed, demonstrating that the proposed method possesses great potential for the quality control of herb medicines.
Collapse
Affiliation(s)
- Zhixu Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Jincai Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Jiaming Yuan
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Zhen Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Zhengchao Tu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Jacques Crommen
- Laboratory of Analytical Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, CIRM, University of Liege, CHU B36, B-4000, Liege, Belgium
| | - Wenhui Luo
- Guangdong Yifang Pharmaceutical Co., Ltd., Foshan, 528000, China
| | - Jialiang Guo
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China; School of Stomatology and Medicine, Foshan University, Foshan, 528000, China.
| | - Tingting Zhang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Zhengjin Jiang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|