1
|
Mao Q, Gu M, Hong C, Wang H, Ruan X, Liu Z, Yuan B, Xu M, Dong C, Mou L, Gao X, Tang G, Chen T, Wu A, Pan Y. A Contrast-Enhanced Tri-Modal MRI Technique for High-Performance Hypoxia Imaging of Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308850. [PMID: 38366271 DOI: 10.1002/smll.202308850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/19/2024] [Indexed: 02/18/2024]
Abstract
Personalized radiotherapy strategies enabled by the construction of hypoxia-guided biological target volumes (BTVs) can overcome hypoxia-induced radioresistance by delivering high-dose radiotherapy to targeted hypoxic areas of the tumor. However, the construction of hypoxia-guided BTVs is difficult owing to lack of precise visualization of hypoxic areas. This study synthesizes a hypoxia-responsive T1, T2, T2 mapping tri-modal MRI molecular nanoprobe (SPION@ND) and provides precise imaging of hypoxic tumor areas by utilizing the advantageous features of tri-modal magnetic resonance imaging (MRI). SPION@ND exhibits hypoxia-triggered dispersion-aggregation structural transformation. Dispersed SPION@ND can be used for routine clinical BTV construction using T1-contrast MRI. Conversely, aggregated SPION@ND can be used for tumor hypoxia imaging assessment using T2-contrast MRI. Moreover, by introducing T2 mapping, this work designs a novel method (adjustable threshold-based hypoxia assessment) for the precise assessment of tumor hypoxia confidence area and hypoxia level. Eventually this work successfully obtains hypoxia tumor target and accurates hypoxia tumor target, and achieves a one-stop hypoxia-guided BTV construction. Compared to the positron emission tomography-based hypoxia assessment, SPION@ND provides a new method that allows safe and convenient imaging of hypoxic tumor areas in clinical settings.
Collapse
Affiliation(s)
- Quanliang Mao
- Department of Radiology, First Affiliated Hospital of Ningbo University, 59 Liuting Street, Ningbo, 315010, P. R. China
| | - Mengyin Gu
- Department of Radiology, First Affiliated Hospital of Ningbo University, 59 Liuting Street, Ningbo, 315010, P. R. China
| | - Chengyuan Hong
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Huiying Wang
- Department of Radiology, First Affiliated Hospital of Ningbo University, 59 Liuting Street, Ningbo, 315010, P. R. China
| | - Xinzhong Ruan
- Department of Radiology, First Affiliated Hospital of Ningbo University, 59 Liuting Street, Ningbo, 315010, P. R. China
| | - Zhusheng Liu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Bo Yuan
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Mengting Xu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Chen Dong
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Lei Mou
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Xiang Gao
- Department of Neurosurgery, First Affiliated Hospital of Ningbo University, Ningbo, 315010, P. R. China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| | - Tianxiang Chen
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, Zhejiang Province, 315201, P. R. China
- Ningbo Clinical Research Center for Medical Imaging, Ningbo, 315010, P. R. China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Yuning Pan
- Department of Radiology, First Affiliated Hospital of Ningbo University, 59 Liuting Street, Ningbo, 315010, P. R. China
- Department of Radiology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
- Ningbo Clinical Research Center for Medical Imaging, Ningbo, 315010, P. R. China
| |
Collapse
|
2
|
Lapusan R, Borlan R, Focsan M. Advancing MRI with magnetic nanoparticles: a comprehensive review of translational research and clinical trials. NANOSCALE ADVANCES 2024; 6:2234-2259. [PMID: 38694462 PMCID: PMC11059564 DOI: 10.1039/d3na01064c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/01/2024] [Indexed: 05/04/2024]
Abstract
The nexus of advanced technology and medical therapeutics has ushered in a transformative epoch in contemporary medicine. Within this arena, Magnetic Resonance Imaging (MRI) emerges as a paramount tool, intertwining the advancements of technology with the art of healing. MRI's pivotal role is evident in its broad applicability, spanning from neurological diseases, soft-tissue and tumour characterization, to many more applications. Though already foundational, aspirations remain to further enhance MRI's capabilities. A significant avenue under exploration is the incorporation of innovative nanotechnological contrast agents. Forefront among these are Superparamagnetic Iron Oxide Nanoparticles (SPIONs), recognized for their adaptability and safety profile. SPION's intrinsic malleability allows them to be tailored for improved biocompatibility, while their functionality is further broadened when equipped with specific targeting molecules. Yet, the path to optimization is not devoid of challenges, from renal clearance concerns to potential side effects stemming from iron overload. This review endeavors to map the intricate journey of SPIONs as MRI contrast agents, offering a chronological perspective of their evolution and deployment. We provide an in-depth current outline of the most representative and impactful pre-clinical and clinical studies centered on the integration of SPIONs in MRI, tracing their trajectory from foundational research to contemporary applications.
Collapse
Affiliation(s)
- Radu Lapusan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University Cluj-Napoca Romania
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University Cluj-Napoca Romania
| | - Raluca Borlan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University Cluj-Napoca Romania
| | - Monica Focsan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University Cluj-Napoca Romania
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University Cluj-Napoca Romania
| |
Collapse
|
3
|
Zhang P, Li W, Liu C, Qin F, Lu Y, Qin M, Hou Y. Molecular imaging of tumour-associated pathological biomarkers with smart nanoprobe: From "Seeing" to "Measuring". EXPLORATION (BEIJING, CHINA) 2023; 3:20230070. [PMID: 38264683 PMCID: PMC10742208 DOI: 10.1002/exp.20230070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/18/2023] [Indexed: 01/25/2024]
Abstract
Although the extraordinary progress has been made in molecular biology, the prevention of cancer remains arduous. Most solid tumours exhibit both spatial and temporal heterogeneity, which is difficult to be mimicked in vitro. Additionally, the complex biochemical and immune features of tumour microenvironment significantly affect the tumour development. Molecular imaging aims at the exploitation of tumour-associated molecules as specific targets of customized molecular probe, thereby generating image contrast of tumour markers, and offering opportunities to non-invasively evaluate the pathological characteristics of tumours in vivo. Particularly, there are no "standard markers" as control in clinical imaging diagnosis of individuals, so the tumour pathological characteristics-responsive nanoprobe-based quantitative molecular imaging, which is able to visualize and determine the accurate content values of heterogeneous distribution of pathological molecules in solid tumours, can provide criteria for cancer diagnosis. In this context, a variety of "smart" quantitative molecular imaging nanoprobes have been designed, in order to provide feasible approaches to quantitatively visualize the tumour-associated pathological molecules in vivo. This review summarizes the recent achievements in the designs of these nanoprobes, and highlights the state-of-the-art technologies in quantitative imaging of tumour-associated pathological molecules.
Collapse
Affiliation(s)
- Peisen Zhang
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
- Department of ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Wenyue Li
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Chuang Liu
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Feng Qin
- Department of Neurosurgery and National Chengdu Center for Safety Evaluation of DrugsState Key Laboratory of Biotherapy/Collaborative Innovation Center for BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Lu
- Department of ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Meng Qin
- Department of Neurosurgery and National Chengdu Center for Safety Evaluation of DrugsState Key Laboratory of Biotherapy/Collaborative Innovation Center for BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yi Hou
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| |
Collapse
|
4
|
Li Z, Bai R, Yi J, Zhou H, Xian J, Chen C. Designing Smart Iron Oxide Nanoparticles for MR Imaging of Tumors. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:315-339. [PMID: 37501794 PMCID: PMC10369497 DOI: 10.1021/cbmi.3c00026] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 07/29/2023]
Abstract
Iron oxide nanoparticles (IONPs) possess unique magnetism and good biocompatibility, and they have been widely applied as contrast agents (CAs) for magnetic resonance imaging (MRI). Traditional CAs typically show a fixed enhanced signal, thus exhibiting the limitations of low sensitivity and a lack of specificity. Nowadays, the progress of stimulus-responsive IONPs allows alteration of the relaxation signal in response to internal stimuli of the tumor, or external stimuli, thus providing an opportunity to overcome those limitations. This review summarizes the current status of smart IONPs as tumor imaging MRI CAs that exhibit responsiveness to endogenous stimuli, such as pH, hypoxia, glutathione, and enzymes, or exogenous stimuli, such as magnets, light, and so on. We discuss the challenges and future opportunities for IONPs as MRI CAs and comprehensively illustrate the applications of these stimuli-responsive IONPs. This review will help provide guidance for designing IONPs as MRI CAs and further promote the reasonable design of magnetic nanoparticles and achieve early and accurate tumor detection.
Collapse
Affiliation(s)
- Zhenzhen Li
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Department
of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ru Bai
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Research
Unit of Nanoscience and Technology, Chinese
Academy of Medical Sciences, Beijing 100021, China
| | - Jia Yi
- Guangdong
Provincial Development and Reform Commission, Guangzhou 510031, China
| | - Huige Zhou
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Research
Unit of Nanoscience and Technology, Chinese
Academy of Medical Sciences, Beijing 100021, China
| | - Junfang Xian
- Department
of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Research
Unit of Nanoscience and Technology, Chinese
Academy of Medical Sciences, Beijing 100021, China
- The
GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|