1
|
Helal DA, Osama A, El-Nabarawi MA, Teaima MH, Ibrahim Al-Samadi IE. Dual-action of clotrimazole loaded - nanosponges vaginal gel for spermicidal action and treatment of vaginal candidiasis: Optimization, in-vitro, ex-vivo, and in-vivo experiments. Int J Pharm 2025; 670:125193. [PMID: 39788399 DOI: 10.1016/j.ijpharm.2025.125193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Clotrimazole (CLO) is a strong antifungal drug approved to treat vaginal candidiasis (VC). Nanosponges (NSs) were developed to maintain providing CLO in a steady pattern with amplified accumulation in the vaginal mucosa. The quasi-emulsion solvent diffusion method was utilized to prepare NSs. The optimized NSs selected by Design Expert® exhibited a production yield percent (PY%) of 60.10 ± 0.39 %, encapsulation efficiency percent (EE%) of 91.21 ± 0.59 %, particle size (PS) 275.50 ± 0.97 nm, polydispersity index (PDI) 0.425 ± 0.01, and zeta potential (ZP) of -27.40 ± 0.25 mV. The morphological results confirmed a spongy, porous structure. Fourier Transform Infrared Spectroscopy ensured the drug encapsulation. Differential scanning calorimetric studies showed no interaction between the excipients and CLO. The prepared NSs-loaded gel of optimized CLO-NSs was evaluated, the mucoadhesive strength (6065.85 ± 52.03 dyne/cm2) with spermicidal activity of (0 % sperm motility/60 s). The ex-vivo deposition depicted significantly increased vaginal retention of CLO by 2.44-fold compared to Candistan® 2 % vaginal cream (the market product). Finally, the in-vivo study on rats demonstrated thesuperior efficacy of CLO-NSs gel relative to Candestan®, with significantly reduced inflammatory biomarkers and minimal histopathological alterations in the treatment of vaginal candidiasis with a high safety profile.
Collapse
Affiliation(s)
- Doaa A Helal
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, El Fayoum, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Arish, Egypt
| | - Amr Osama
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, El Fayoum, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud Hassan Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Inas Essam Ibrahim Al-Samadi
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt.
| |
Collapse
|
2
|
Mardikasari SA, Katona G, Budai-Szűcs M, Kiricsi Á, Rovó L, Csóka I. Mucoadhesive in situ nasal gel of amoxicillin trihydrate for improved local delivery: Ex vivo mucosal permeation and retention studies. Eur J Pharm Sci 2024; 202:106897. [PMID: 39243910 DOI: 10.1016/j.ejps.2024.106897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Orally administered amoxicillin is recommended as the first-line treatment of acute bacterial rhinosinusitis (ABR) and given in a high-dose regimen. However, the risk of various systemic adverse reactions and low oral bioavailability are unbearable, increasing the threat of antibiotic resistance. Therefore, nasal delivery of amoxicillin can be a potential approach for effectively treating ABR locally, as well as overcoming those drawbacks. In a way to guarantee the effectiveness for local therapy in nasal cavity, the permeation and retention properties are of significant importance considerations. Accordingly, the present work aimed to investigate the characteristics with respect to the nasal applicability of the in situ gelling amoxicillin trihydrate (AMT) and further evaluate its permeability and retention properties through human nasal mucosa. The lyophilized formulations were characterized utilizing the Differential Scanning Calorimetry (DSC) and X-ray Powder Diffraction (XRPD), and also evaluated for its polarity, reconstitution time, droplet size distribution, mucoadhesive properties, and ex vivo permeability and retention studies. The results confirmed that the in situ gelling AMT formulations possess adequate mucoadhesive behavior, especially the formulation containing 0.3 % of gellan gum. Substantially, the in situ gelling AMT formulations were able to retain the drug on the surface of nasal mucosa instead of permeating across the membrane; thus, suitable for treating nasal infections locally. Altogether, the in situ gelling systems demonstrates promising abilities as a delivery platform to enhance local application of AMT within the nasal cavity.
Collapse
Affiliation(s)
- Sandra Aulia Mardikasari
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, Szeged H-6720, Hungary; Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, Szeged H-6720, Hungary.
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, Szeged H-6720, Hungary
| | - Ágnes Kiricsi
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Tisza Lajos krt. 111, Szeged H-6725, Hungary
| | - László Rovó
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Tisza Lajos krt. 111, Szeged H-6725, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, Szeged H-6720, Hungary
| |
Collapse
|
3
|
Galasso C, Ruocco N, Mutalipassi M, Barra L, Costa V, Giommi C, Dinoi A, Genovese M, Pica D, Romano C, Greco S, Pennesi C. Marine polysaccharides, proteins, lipids, and silica for drug delivery systems: A review. Int J Biol Macromol 2023; 253:127145. [PMID: 37778590 DOI: 10.1016/j.ijbiomac.2023.127145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Marine environments represent an incredible source of biopolymers with potential biomedical applications. Recently, drug delivery studies have received great attention for the increasing need to improve site specificity, therapeutic value, and bioavailability, reducing off-target effects. Marine polymers, such as alginate, carrageenan, collagen, chitosan, and silica, have reported unique biochemical features, allowing an efficient binding with drugs, and a controlled release to the target tissue, also obtainable through "green processes". In the present review, we i) analysed the last ten years of scientific peer-reviewed literature; ii) divided the articles based on the achieved experimental phases, tagged as chemistry, drug release, and drug delivery, and iii) compared the best performances among marine polymers extracted from micro- and macro-organisms. Many reviews describe drug carriers from marine organisms, focusing on a single biopolymer or a chemical class. Our study is a groundbreaking literature collection, representing the first thorough investigation of all marine biopolymers described. Most articles report experimental results on the chemical characterisation of marine biopolymers and their in vitro behaviour as drug carriers, although development processes and commercial applications are still in the early stages. Hence, the next efforts should be focused on the sustainable production of marine polymers and final product development.
Collapse
Affiliation(s)
- Christian Galasso
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy.
| | - Nadia Ruocco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy.
| | - Mirko Mutalipassi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Lucia Barra
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Valentina Costa
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Chiara Giommi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Alessia Dinoi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Martina Genovese
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Daniela Pica
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Chiara Romano
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II, 9, 12042 Pollenzo, Bra CN, Italy
| | - Silvestro Greco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Chiara Pennesi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy.
| |
Collapse
|
4
|
Kassem A, Refai H, El-Nabarawi MA, Abdellatif MM. Formulation and Evaluation of Prednisolone Sodium Metazoate-Loaded Mucoadhesive Quatsomal Gel for Local Treatment of Recurrent Aphthous Ulcers: Optimization, In Vitro, Ex Vivo, and In Vivo Studies. Pharmaceutics 2023; 15:1947. [PMID: 37514134 PMCID: PMC10383094 DOI: 10.3390/pharmaceutics15071947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
This study aims to formulate a buccal mucoadhesive gel containing prednisolone sodium metazoate-loaded quatsomes for efficient localized therapy of recurrent aphthous ulcers. Quatsomes were prepared using a varied concentration of quaternary ammonium surfactants (QAS) and cholesterol (CHO). A 23 factorial design was conducted to address the impact of independent variables QAS type (X1), QAS to CHO molar ratio (X2), and sonication time (X3). The dependent variables were particle size (PS; Y1), polydispersity index (PDI; Y2), zeta potential (ZP; Y3), entrapment efficiency percent (EE%; Y4) and percent of drug released after 6 h (Q6%: Y5). Then, the selected quatsomes formula was incorporated into different gel bases to prepare an optimized mucoadhesive gel to be evaluated via in vivo study. The PS of the developed quatsomes ranged from 69.47 ± 0.41 to 113.28 ± 0.79 nm, the PDI from 0.207 ± 0.004 to 0.328 ± 0.004, ZP from 45.15 ± 0.19 to 68.1 ± 0.54 mV, EE% from 79.62 ± 1.44 to 98.60% ± 1.22 and Q6% from 58.39 ± 1.75 to 94.42% ± 2.15. The quatsomal mucoadhesive gel showed rapid recovery of ulcers, which was confirmed by the histological study and the evaluation of inflammatory biomarkers. These results assured the capability of the developed quatsomal mucoadhesive gel to be a promising formulation for treating buccal diseases.
Collapse
Affiliation(s)
- Ashraf Kassem
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12566, Egypt
| | - Hanan Refai
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12566, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini Street, Cairo 11562, Egypt
| | - Menna M Abdellatif
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12566, Egypt
| |
Collapse
|
5
|
Hanif S, Syed MA, Rashid AJ, Alharby TN, Algahtani MM, Alanazi M, Alanazi J, Sarfraz RM. Validation of a Novel RP-HPLC Technique for Simultaneous Estimation of Lignocaine Hydrochloride and Tibezonium Iodide: Greenness Estimation Using AGREE Penalties. Molecules 2023; 28:molecules28083418. [PMID: 37110652 PMCID: PMC10144333 DOI: 10.3390/molecules28083418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Herein, we reported an HPLC method for the simultaneous determination of tibezonium iodide (TBN) and lignocaine hydrochloride (LGN). The method was developed according to the International Conference for Harmonization guidelines (ICH) Q2R1 using Agilent® 1260 with a mobile phase consisting of acetonitrile and phosphate buffer (pH 4.5) in a volumetric ratio of 70:30 and flowing through a C8 Agilent® column at 1 mL/min. The results revealed that TBN and LGN peaks were isolated at 4.20 and 2.33 min, respectively, with a resolution of 2.59. The accuracy of TBN and LGN was calculated to be 100.01 ± 1.72% and 99.05 ± 0.65% at 100% concentration, respectively. Similarly, the respective precision was 100.03 ± 1.61% and 99.05 ± 0.48%. The repeatability for TBN and LGN was found to be 99.05 ± 0.48% and 99.19 ± 1.72%, respectively, indicating that the method was precise. The respective regression co-efficient (r2) for TBN and LGN was found to be 0.9995 and 0.9992. Moreover, the LOD and LOQ values for TBN were 0.012 and 0.037 µg/mL, respectively, while for LGN, they were 0.115 and 0.384 µg/mL, respectively. The calculated greenness of the method for ecological safety was found to be 0.83, depicting a green contour on the AGREE scale. No interfering peaks were found when the analyte was estimated in dosage form and in volunteers' saliva, depicting the specificity of the method. Conclusively, a robust, fast, accurate, precise and specific method was successfully validated to estimate TBN and LGN.
Collapse
Affiliation(s)
- Sana Hanif
- College of Pharmacy, University of Sargodha, Sargodha 40162, Pakistan
- Faculty of Pharmacy, The University of Lahore, Lahore 54590, Pakistan
| | - Muhammad Ali Syed
- Faculty of Pharmacy, The University of Lahore, Lahore 54590, Pakistan
- Department of Pharmaceutical Sciences, Faculty of Chemistry and Life Sciences, Government College University Lahore, Lahore 54000, Pakistan
| | - Ahmad Junaid Rashid
- Quality Control Department, Pacific Pharmaceuticals Limited, Lahore 54000, Pakistan
| | - Tareq Nafea Alharby
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Mohammad M Algahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muteb Alanazi
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Jowaher Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | | |
Collapse
|
6
|
Nair AB, Chaudhary S, Jacob S, Patel D, Shinu P, Shah H, Chaudhary A, Aldhubiab B, Almuqbil RM, Alnaim AS, Alqattan F, Shah J. Intranasal Administration of Dolutegravir-Loaded Nanoemulsion-Based In Situ Gel for Enhanced Bioavailability and Direct Brain Targeting. Gels 2023; 9:gels9020130. [PMID: 36826300 PMCID: PMC9956165 DOI: 10.3390/gels9020130] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Dolutegravir's therapeutic effectiveness in the management of neuroAIDS is mainly limited by its failure to cross the blood-brain barrier. However, lipid-based nanovesicles such as nanoemulsions have demonstrated their potential for the brain targeting of various drugs by intranasal delivery. Thus, the purpose of this study was to develop a Dolutegravir-loaded nanoemulsion-based in situ gel and evaluate its prospective for brain targeting by intranasal delivery. Dolutegravir-loaded nanoemulsions were prepared using dill oil, Tween® 80, and Transcutol® P. Optimization of the nanoemulsion particle size and drug release was carried out using a simplex lattice design. Formulations (F1-F7 and B1-B6) were assessed for various pharmaceutical characteristics. Ex vivo permeation and ciliotoxicity studies of selected in situ gels (B1) were conducted using sheep nasal mucosa. Drug targeting to the brain was assessed in vivo in rats following the nasal delivery of B1. The composition of oil, surfactant, and cosurfactant significantly (p < 0.05) influenced the dependent variables (particle size and % of drug release in 8 h). Formulation B1 exhibits pharmaceutical characteristics that are ideal for intranasal delivery. The mucosal steady-state flux noticed with BI was significantly greater (p < 0.005) than for the control gel. A histopathology of nasal mucosa treated with BI showed no signs of toxicity or cellular damage. Intranasal administration of B1 resulted in greater Cmax (~six-fold, p < 0.0001) and AUC0-α (~five-fold, p < 0.0001), and decreased Tmax (1 h) values in the brain, compared to intravenous administration. Meantime, the drug level in the plasma was relatively low, suggesting less systemic exposure to Dolutegravir through intranasal delivery. In summary, the promising data observed here signifies the prospective of B1 to enhance the brain targeting of Dolutegravir by intranasal delivery and it could be used as a feasible and practicable strategy for the management of neuroAIDS.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (A.B.N.); (J.S.); Tel.: +966-536219868 (A.B.N.); +91-9909007411 (J.S.)
| | - Sunita Chaudhary
- Department of Pharmaceutics, Arihant School of Pharmacy & BRI, Adalaj, Gandhinagar 382421, India
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Dhwani Patel
- Department of Pharmaceutics, Arihant School of Pharmacy & BRI, Adalaj, Gandhinagar 382421, India
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Hiral Shah
- Department of Pharmaceutics, Arihant School of Pharmacy & BRI, Adalaj, Gandhinagar 382421, India
| | - Ankit Chaudhary
- Department of Quality Assurance, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar 382355, India
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ahmed S. Alnaim
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fatemah Alqattan
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
- Correspondence: (A.B.N.); (J.S.); Tel.: +966-536219868 (A.B.N.); +91-9909007411 (J.S.)
| |
Collapse
|
7
|
Marya A, Rokaya D, Heboyan A, Fernandes GVDO. Biomolecular and Biochemical Aspects of the Oral Cavity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248676. [PMID: 36557808 PMCID: PMC9782879 DOI: 10.3390/molecules27248676] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Recent advances in science, especially innovations in the field of biochemistry and materials science, greatly contribute to improvements in the prevention, diagnosis, and treatment of oral diseases [...].
Collapse
Affiliation(s)
- Anand Marya
- Department of Orthodontics, Faculty of Dentistry, University of Puthisastra, Phnom Penh 12211, Cambodia
| | - Dinesh Rokaya
- Department of Clinical Dentistry, Walailak University International College of Dentistry, Walailak University, Bangkok 10400, Thailand
| | - Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, Yerevan 0025, Armenia
- Correspondence: (A.H.); (G.V.d.O.F.)
| | | |
Collapse
|