1
|
Maroń AM, Cannelli O, Socie EC, Lodowski P, Oppermann M, Machura B, Chergui M. Early bird or night owl? Controlling the ultrafast photodynamics of triphenylamine substituted 2,2':6',2''-terpyridine. Phys Chem Chem Phys 2024; 26:6265-6276. [PMID: 38305747 DOI: 10.1039/d3cp04492k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Controlling the ultrafast photodynamics of metal-free organic molecules has great potential for technological applications. In this work, we use solvent polarity and viscosity as "external knobs" to govern the photodynamics of an electron-donating derivative of 2,2':6',2''-terpyridine (terpy), namely 4'-(4-(di(4-tert-butylphenyl)amine)phenyl)-2,2':6',2''-terpyridine (tBuTPAterpy). We combine femtosecond fluorescence upconversion (FlUC), transient absorption (TA) and quantum mechanical calculations to provide a comprehensive description of the tBuTPAterpy's photodynamics. Our results demonstrate that, by changing the solvent, the time scale of light-induced conformational changes of the system can be tuned over two orders of magnitude, controlling the tBuTPAterpy fluorescence spectral region and yield. As a result, depending on the local environment, tBuTPAterpy can act either as an "early bird" or a "night owl", with a tunability that makes it a promising candidate for metal-free sensors.
Collapse
Affiliation(s)
- Anna Maria Maroń
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice, Poland.
| | - Oliviero Cannelli
- Laboratory of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, ISIC CH H1 625, Station 6, CH-1015, Lausanne, Switzerland
- Center for Free-Electron Laser Science, DESY, Notkestraße 85, 22607 Hamburg, Germany.
| | - Etienne Christophe Socie
- Laboratory of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, ISIC CH H1 625, Station 6, CH-1015, Lausanne, Switzerland
| | - Piotr Lodowski
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice, Poland.
| | - Malte Oppermann
- Laboratory of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, ISIC CH H1 625, Station 6, CH-1015, Lausanne, Switzerland
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Barbara Machura
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice, Poland.
| | - Majed Chergui
- Laboratory of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, ISIC CH H1 625, Station 6, CH-1015, Lausanne, Switzerland
- Elettra - Sincrotrone Trieste S.C.p.A., S.S.14 Km.163, 5 in Area Science Park, I - 34149, Trieste, Italy
| |
Collapse
|
2
|
Zheng R, Cheng M, Ma R, Schipper D, Pichugin K, Sciaini G. Solvent effects on the intramolecular charge transfer excited state of 3CzClIPN: a broadband transient absorption study. Phys Chem Chem Phys 2024; 26:1039-1045. [PMID: 38093689 DOI: 10.1039/d3cp04975b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The prediction of solvent properties using molecular probes often relies on correlating steady-state absorption and fluorescence measurements, as well as determining absorption maxima and/or Stokes shifts. In this study, we employ femtosecond broadband transient absorption (fs-bb-TA) spectroscopy to investigate the spectroscopic behaviour of the intramolecular charge transfer (ICT) excited state of 3CzClIPN (2,4,6-tri(9H-carbazol-9-yl)-5-chloroisophthalonitrile), a representative ICT organic molecule, in both aromatic and non-aromatic solvents. Unlike observations in non-aromatic media, fs-bb-TA spectra of 3CzClIPN in aromatic solvents exhibit enhanced spectral broadening that strongly correlates with the solvent's polarity. We hypothesise that this spectral broadening originates from a wider configurational energy landscape experienced by the positively charged carbazole Cz+ group, owing to the larger size and, consequently, reduced solvation effectiveness of aromatic solvent molecules.
Collapse
Affiliation(s)
- Ruofei Zheng
- The Ultrafast Electron Imaging Laboratory, University of Waterloo, Waterloo, Canada.
- Department of Chemistry, University of Waterloo, Waterloo, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Meixin Cheng
- Department of Chemistry, University of Waterloo, Waterloo, Canada
| | - Ruishu Ma
- The Ultrafast Electron Imaging Laboratory, University of Waterloo, Waterloo, Canada.
- Department of Chemistry, University of Waterloo, Waterloo, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Derek Schipper
- Department of Chemistry, University of Waterloo, Waterloo, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Kostyantyn Pichugin
- The Ultrafast Electron Imaging Laboratory, University of Waterloo, Waterloo, Canada.
- Department of Chemistry, University of Waterloo, Waterloo, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Germán Sciaini
- The Ultrafast Electron Imaging Laboratory, University of Waterloo, Waterloo, Canada.
- Department of Chemistry, University of Waterloo, Waterloo, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada
| |
Collapse
|