1
|
Mbula JP, Andres MF, Kitete EM, Kasiama NG, Tshilanda DD, Ngbolua KN, Tshibangu DST, Onautshu O, González-Coloma A, Mpiana PT. Valorization of the essential oil from Drypetes gossweileri S. Moore (Putranjivaceae): in vitro, in vivo, and in silico nematicidal activity. FRONTIERS IN PLANT SCIENCE 2023; 14:1260360. [PMID: 38098790 PMCID: PMC10720977 DOI: 10.3389/fpls.2023.1260360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023]
Abstract
The chemical composition, insect antifeedant, in vtro/in vivo nematicidal activity, phytotoxicity, and in silico nematicidal activity of the essential oil (EO) of the African medicinal plant Drypetes gossweileri were studied. Chemical analysis using GC/MS indicated that benzyl isothiocyanate (96.23%) was the major compound, followed by benzyl cyanide (1.38%). The biocidal effects of this oil were tested against insect pests and root-knot nematodes. All the insect species tested were significantly affected by the oil according to their feeding adaptations (Spodoptera littoralis and Myzus persicae were less affected than Rhopalosiphum padi) with efficient doses (EC50) of 29.4 8.3 μg/cm2, 14.744 8.3 μg/cm2, and 8.3 μg/cm2, respectively. The oil was highly effective against juveniles J2 of the nematode Meloidogyne javanica, with LC50-LC90 values of 0.007 mg/mL-0.0113 mg/mL. D. gossweileri EO at minimum lethal concentrations (MLC) and below strongly inhibited egg hatching in vitro, whereas soil treatment caused a strong suppression of nematode population, infection frequency, and multiplication rate. The EO inhibited ryegrass (Lolium perenne) germination at 0.4 mg/mL, while at 0.1 mg/mL, its effects on germination, root and leaf growth were moderate (32.4%, 8.4%, and 18.3%, respectively). The tomato (Solanum lycopersicum) germination was not affected by the EO, but the root growth was reduced (56% at 0.1 mg/mL) at a dose 10 times higher than the LD50 calculated for M. javanica J2 mortality. Molecular docking of the nematicidal effects of the oil using PyRx revealed a strong interaction between potassium chloride transporting KCC3 (PDB ID: 7D90) and benzyl cyanide at a distance of 2.20 A° with GLN C:350, followed by benzyl isothiocyanate at a distance of 2.78 A° with ARG B:294. The in vivo nematicidal effects of D. gossweileri EO on M. javanica penetration and reproduction in tomato roots further support the potential of this EO as a nematicidal agent with insect antifeedant effects, which could be used by local farmers for crop protection.
Collapse
Affiliation(s)
- Jean Pierre Mbula
- Faculté des Sciences, Université de Kisangani, Kisangani, Democratic Republic of Congo
| | - Maria Fe Andres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Emmanuel M. Kitete
- Faculté des Sciences, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - N. G. Kasiama
- Faculté des Sciences, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - D. D. Tshilanda
- Faculté des Sciences, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - K. N. Ngbolua
- Faculté des Sciences, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - D. S. T. Tshibangu
- Faculté des Sciences, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - O. Onautshu
- Faculté des Sciences, Université de Kisangani, Kisangani, Democratic Republic of Congo
| | - Azucena González-Coloma
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pius T. Mpiana
- Faculté des Sciences, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| |
Collapse
|
2
|
Vepštaitė-Monstavičė I, Ravoitytė B, Būdienė J, Valys A, Lukša J, Servienė E. Essential Oils of Mentha arvensis and Cinnamomum cassia Exhibit Distinct Antibacterial Activity at Different Temperatures In Vitro and on Chicken Skin. Foods 2023; 12:3938. [PMID: 37959057 PMCID: PMC10647671 DOI: 10.3390/foods12213938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The bacterial contamination of meat is a global concern, especially for the risk of Salmonella infection that can lead to health issues. Artificial antibacterial compounds used to preserve fresh meat can have negative health effects. We investigated the potential of natural essential oils (EOs), namely Mentha arvensis (mint) and Cinnamomum cassia (cinnamon) EOs, to prevent contamination of the food pathogen, Salmonella enterica subsp. enterica serotype Typhimurium, in vitro and on chicken skin. The gas chromatography-mass spectrometry (GC-MS) technique was used to determine the compositions of mint EO (MEO) and cinnamon EO (CEO); the most abundant compound in MEO was menthol (68.61%), and the most abundant compound was cinnamaldehyde (83.32%) in CEO. The antibacterial activity of MEO and CEO were examined in vapor and direct contact with S. typhimurium at temperatures of 4 °C, 25 °C, and 37 °C. The minimal inhibitory concentration at 37 °C for MEO and CEO reached 20.83 µL/mL, and the minimal bactericidal concentration of CEO was the same, while for MEO, it was two-fold higher. We report that in most tested conditions in experiments performed in vitro and on chicken skin, CEO exhibits a stronger antibacterial effect than MEO. In the vapor phase, MEO was more effective against S. typhimurium than CEO at 4 °C. In direct contact, the growth of S. typhimurium was inhibited more efficiently by MEO than CEO at small concentrations and a longer exposure time at 37 °C. The exploration of CEO and MEO employment for the inhibition of Salmonella bacteria at different temperatures and conditions expands the possibilities of developing more environment- and consumer-friendly antibacterial protection for raw meat.
Collapse
Affiliation(s)
| | - Bazilė Ravoitytė
- Laboratory of Genetics, Nature Research Centre, 08412 Vilnius, Lithuania; (I.V.-M.); (A.V.); (J.L.)
| | - Jurga Būdienė
- Laboratory of Chemical and Behavioural Ecology, Nature Research Centre, 08412 Vilnius, Lithuania;
| | - Algirdas Valys
- Laboratory of Genetics, Nature Research Centre, 08412 Vilnius, Lithuania; (I.V.-M.); (A.V.); (J.L.)
| | - Juliana Lukša
- Laboratory of Genetics, Nature Research Centre, 08412 Vilnius, Lithuania; (I.V.-M.); (A.V.); (J.L.)
| | - Elena Servienė
- Laboratory of Genetics, Nature Research Centre, 08412 Vilnius, Lithuania; (I.V.-M.); (A.V.); (J.L.)
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania
| |
Collapse
|
3
|
Comparative investigation of key aroma terpenoids of Litsea cubeba essential oil by sensory, chromatographic, spectral and molecular studies. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
4
|
Rashed MMA, You L, Ghaleb ADS, Du Y. Two-Phase Extraction Processes, Physicochemical Characteristics, and Autoxidation Inhibition of the Essential Oil Nanoemulsion of Citrus reticulata Blanco (Tangerine) Leaves. Foods 2022; 12:foods12010057. [PMID: 36613276 PMCID: PMC9818749 DOI: 10.3390/foods12010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Combined ultrasound-microwave techniques and pre-enzymatic treatment (hemicellulase and cellulase) enhance essential oil isolation from Citrus reticulata Blanco (tangerine) leaves (CrBL). Subsequently, synergistic effects of modified amorphous octenyl succinic anhydride starch (OSA-MS), almond oil, and high-energy microfluidics were studied in synergy with ultrasound techniques in the production of CrBL essential oil (CrBL-EO) nanoemulsion (CrBL-EONE). GC-MS was used to study the extraction technique. Dynamic light scattering (DLS) analysis was used with confocal laser scanning microscopy (CLSM) techniques to investigate the nanoemulsion matrices' physical and chemical properties. The D-limonene nanoemulsion (D-LNE) reached the optimal size of droplets (65.3 ± 1.1 r.nm), polydispersity index (PDI) (0.167 ± 0.015), and ζ-potential (-41.0 ± 0.4 mV). Besides, the CrBL-EONE obtained the optimal size of droplets (86.5 ± 0.5 r.nm), PDI (0.182 ± 0.012), and ζ-potential (-40.4 ± 0.8 mV). All the nanoparticle treatments showed significant values in terms of the creaming index (CI%) and inhibition activity (IA%) in the β-carotene/linoleate system with a low degradation rate (DR). The current study's findings showed that integrated ultrasound-microwave techniques and pre-enzymatic treatment could enhance the extraction efficiency of the CrBL-EO. In addition, OSA-MS and almond oil can also be employed to produce CrBL-EONE and D-LNE.
Collapse
Affiliation(s)
- Marwan M. A. Rashed
- Key Laboratory of Fermentation Resource and Application in Sichuan Higher Education, Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644001, China
- School of Biological and Food Engineering, Suzhou University, Bianhe Middle Road 49, Yongqiao, Suzhou 234000, China
- Correspondence:
| | - Ling You
- Key Laboratory of Fermentation Resource and Application in Sichuan Higher Education, Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644001, China
| | - Abduljalil D. S. Ghaleb
- Faculty of Applied and Medical Science, AL-Razi University, Al-Rebatt St., Sana’a 216923, Yemen
| | - Yonghua Du
- Key Laboratory of Fermentation Resource and Application in Sichuan Higher Education, Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644001, China
| |
Collapse
|