1
|
Kumar C P, Banumathi, Satyanarayan ND, Prasad SR, Achur RN, Prabhakar BT. A quinoline derivative exerts antineoplastic efficacy against solid tumour by inducing apoptosis and anti-angiogenesis both in vitro and in vivo. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03830-8. [PMID: 39912901 DOI: 10.1007/s00210-025-03830-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025]
Abstract
Cancer is a heterogeneous and multicomplex disease with the highest morbidity and mortality rate. The targeting of tumour progression with drugs is a very well-established treatment strategy. Despite these, due to the failure of commonly used drugs in combating cancer, new drugs need to be screened and established for better therapeutic approach. With this rationale, the current investigation was aimed to develop quinoline compound (QC) derivatives as anti-tumour molecules. In this extended study, a series of QC analogues were subjected to anti proliferative assays through cell-based screening and evaluated its mechanism of action through apoptotic and anti-angiogenic assays. The change in cell behaviour was assessed through gene expression analysis using qRT-PCR and immunoblot analysis. Further, in vivo solid tumour model was developed and the anti-tumour potential of QC-4 was verified with gene expression studies. The results suggested that QC-4 exhibited significant cytotoxic effect, particularly against human lung adenocarcinoma cell lines and murine Ehrlich Ascites Carcinoma cells. The QC-4 induced condensation, nuclear damage and changes in membrane integrity resulted in apoptosis and neovascularisation inhibition. The modulation of apoptotic and angiogenic genes such as BAX, BAD, p53 and MMP-2 and 9 further supported the molecular cause of cytotoxicity induced by QC-4. The regression of in vivo solid tumour with extended survivability warranted the in vitro results and the gene expression patterns were additionally supportive. Overall, the QC-4 analogue exhibits the anti-neoplastic with a multi-target approach, reserving its capacity to be developed into a new class of the anticancer molecules.
Collapse
Affiliation(s)
- Pradeepa Kumar C
- Department of Biochemistry, Jnana Sahyadri, Kuvempu University, Shankaraghatta, 577451, Shimoga, Karnataka, India
| | - Banumathi
- Molecular Biomedicine Laboratory, Post Graduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, 577 203, Karnataka, India
| | - N D Satyanarayan
- Department of Pharmaceutical Chemistry, Post-Graduate Centre, Kuvempu University, Kadur, 577548, Chikmagalur Dist, Karnataka, India
| | - Sakshith Raghavendra Prasad
- Department of Pharmaceutical Chemistry, Post-Graduate Centre, Kuvempu University, Kadur, 577548, Chikmagalur Dist, Karnataka, India
| | - Rajeshwara N Achur
- Department of Biochemistry, Jnana Sahyadri, Kuvempu University, Shankaraghatta, 577451, Shimoga, Karnataka, India.
- INTI International University, Nilai, Malaysia.
| | - B T Prabhakar
- Molecular Biomedicine Laboratory, Post Graduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, 577 203, Karnataka, India.
| |
Collapse
|
2
|
Yang QY, Pu X, Chen C, Zeb MA, Tu WC, Li HL, Li XL, Xiao WL. Six new quassinoids from Picrasma chinese P·Y. Chen and their cytotoxicity activity. Fitoterapia 2024; 177:106094. [PMID: 38936674 DOI: 10.1016/j.fitote.2024.106094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/24/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
In the present study, six new compounds namely, picralactones CH (1-6) along with nine known compounds (7-15) were isolated from the branches and leaves of Picrasma chinese P.Y. Chen. Their structures were determined with the help of spectroscopic techniques such as NMR, HR-ESI-MS, UV, IR and CD. Cytotoxicity of all compounds was evaluated against MDA-MB-231, SW-620 and HepG2 human cancer cell lines. Compound 4 showed cytotoxic activities.
Collapse
Affiliation(s)
- Quan-Yu Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Medicine, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Xia Pu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Medicine, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Chan Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Medicine, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Muhammad Aurang Zeb
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Medicine, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Wen-Chao Tu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Medicine, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Hong-Liang Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Medicine, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China.
| | - Xiao-Li Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Medicine, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China.
| | - Wei-Lie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Medicine, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China; Southwest United Graduate School, Kunming 650592, PR China.
| |
Collapse
|
3
|
Costanzo V, Ratre YK, Andretta E, Acharya R, Bhaskar LVKS, Verma HK. A Comprehensive Review of Cancer Drug-Induced Cardiotoxicity in Blood Cancer Patients: Current Perspectives and Therapeutic Strategies. Curr Treat Options Oncol 2024; 25:465-495. [PMID: 38372853 DOI: 10.1007/s11864-023-01175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/20/2024]
Abstract
OPINION STATEMENT Cardiotoxicity has emerged as a serious outcome catalyzed by various therapeutic targets in the field of cancer treatment, which includes chemotherapy, radiation, and targeted therapies. The growing significance of cancer drug-induced cardiotoxicity (CDIC) and radiation-induced cardiotoxicity (CRIC) necessitates immediate attention. This article intricately unveils how cancer treatments cause cardiotoxicity, which is exacerbated by patient-specific risks. In particular, drugs like anthracyclines, alkylating agents, and tyrosine kinase inhibitors pose a risk, along with factors such as hypertension and diabetes. Mechanistic insights into oxidative stress and topoisomerase-II-B inhibition are crucial, while cardiac biomarkers show early damage. Timely intervention and prompt treatment, especially with specific agents like dexrazoxane and beta-blockers, are pivotal in the proactive management of CDIC.
Collapse
Affiliation(s)
- Vincenzo Costanzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Emanuela Andretta
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Rakesh Acharya
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - L V K S Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lungs Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, 85764, Munich, Germany.
| |
Collapse
|
4
|
Martínez-Casares RM, Hernández-Vázquez L, Mandujano A, Sánchez-Pérez L, Pérez-Gutiérrez S, Pérez-Ramos J. Anti-Inflammatory and Cytotoxic Activities of Clerodane-Type Diterpenes. Molecules 2023; 28:4744. [PMID: 37375299 DOI: 10.3390/molecules28124744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The secondary metabolites of clerodane diterpenoids have been found in several plant species from various families and in other organisms. In this review, we included articles on clerodanes and neo-clerodanes with cytotoxic or anti-inflammatory activity from 2015 to February 2023. A search was conducted in the following databases: PubMed, Google Scholar and Science Direct, using the keywords clerodanes or neo-clerodanes with cytotoxicity or anti-inflammatory activity. In this work, we present studies on these diterpenes with anti-inflammatory effects from 18 species belonging to 7 families and those with cytotoxic activity from 25 species belonging to 9 families. These plants are mostly from the Lamiaceae, Salicaceae, Menispermaceae and Euphorbiaceae families. In summary, clerodane diterpenes have activity against different cell cancer lines. Specific antiproliferative mechanisms related to the wide range of clerodanes known today have been described, since many of these compounds have been identified, some of which we barely know their properties. It is very possible that there are even more compounds than those described today, in such a way that makes it an open field to discover. Furthermore, some diterpenes presented in this review have already-known therapeutic targets, and therefore, their potential adverse effects can be predicted in some way.
Collapse
Affiliation(s)
- Rubria Marlen Martínez-Casares
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Coyoacán 04960, CDMX, Mexico
| | - Liliana Hernández-Vázquez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Coyoacán 04960, CDMX, Mexico
| | - Angelica Mandujano
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Coyoacán 04960, CDMX, Mexico
| | - Leonor Sánchez-Pérez
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Coyoacán 04960, CDMX, Mexico
| | - Salud Pérez-Gutiérrez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Coyoacán 04960, CDMX, Mexico
| | - Julia Pérez-Ramos
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Coyoacán 04960, CDMX, Mexico
| |
Collapse
|
5
|
Wang X, Hu Q, Tang H, Pan X. Isoxazole/Isoxazoline Skeleton in the Structural Modification of Natural Products: A Review. Pharmaceuticals (Basel) 2023; 16:228. [PMID: 37259376 PMCID: PMC9964809 DOI: 10.3390/ph16020228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 03/09/2024] Open
Abstract
Isoxazoles and isoxazolines are five-membered heterocyclic molecules containing nitrogen and oxygen. Isoxazole and isoxazoline are the most popular heterocyclic compounds for developing novel drug candidates. Over 80 molecules with a broad range of bioactivities, including antitumor, antibacterial, anti-inflammatory, antidiabetic, cardiovascular, and other activities, were reviewed. A review of recent studies on the use of isoxazoles and isoxazolines moiety derivative activities for natural products is presented here, focusing on the parameters that affect the bioactivity of these compounds.
Collapse
Affiliation(s)
| | | | | | - Xinhui Pan
- Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmaceutical Sciences, Shihezi University, Shihezi 832002, China
| |
Collapse
|