1
|
Holman AP, Pickett DN, Orr AE, Tarone AM, Kurouski D. A nondestructive technique for the sex identification of third instar Cochliomyia macellaria larvae. J Forensic Sci 2024; 69:2075-2081. [PMID: 39223721 DOI: 10.1111/1556-4029.15619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Forensic entomology plays an important role in medicolegal investigations by using insects, primarily flies, to estimate the time of colonization. This estimation relies on the development of the flies found at the (death) scene and can be affected (and sometimes corrected) by external factors, such as temperature and humidity, and internal factors, such as species and sex. This study leverages infrared (IR) spectroscopy combined with machine learning models-Partial Least Squares Discriminant Analysis (PLS-DA) and eXtreme Gradient Boosting trees Discriminant Analysis (XGBDA)-to differentiate between male and female Cochliomyia macellaria larvae, commonly found on human remains. Significant vibrational differences were detected in the infrared spectra of third instar C. macellaria larvae, with distinct peaks showing variations in relative absorbance between sexes, suggesting differences in biochemical compositions such as cuticular proteins and lipids. The application of PLS-DA and XGBDA yielded high classification accuracies of about 94% and 96%, respectively, with female spectra consistently having higher sensitivity than males. This non-destructive approach offers the potential to refine supplemental post-mortem interval estimations significantly, enhancing the accuracy of forensic analyses.
Collapse
Affiliation(s)
- Aidan P Holman
- Department of Entomology, Texas A&M University, College Station, Texas, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Davis N Pickett
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Abigail E Orr
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Aaron M Tarone
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Fiorilla E, Gariglio M, Gai F, Zambotto V, Bongiorno V, Cappone EE, Rødbotten R, Koga S, Rieder A, Tengstrand E, Pozzo S, Daniele GM, Cianciabella M, Predieri S, Forte C, Schiavone A. Breaking down barriers: live or dehydrated dietary whole black soldier fly larvae supplementation in slow growing chickens preserve meat quality and sensory traits. Poult Sci 2024; 103:104120. [PMID: 39232306 PMCID: PMC11407956 DOI: 10.1016/j.psj.2024.104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 09/06/2024] Open
Abstract
This study investigated the effects of supplementing the diet of a slow-growing autochthonous chicken breed with dehydrated or live Black Soldier Fly Larvae (BSFL) on meat quality and sensory attributes. The research, conducted at the University of Turin, Italy, involved 144 male birds distributed in three experimental groups. The control group (C) was fed a basal diet in which soybean meal was completely substituted with alternative ingredients. The 2 experimental groups were administered a diet identical to the control group but supplemented with either whole dehydrated black soldier fly larvae (DL) or whole live black soldier fly larvae (LL) at a level equal to 5% expected daily feed intake of dry matter. We evaluated the following parameters: nutrient intake, slaughtering performance, physical and nutritional meat quality, fatty acid composition, proteomics, and sensory characteristics. The results demonstrated BSFL supplementation to have no detrimental effects on overall meat quality or sensory attributes. Specifically, there were no significant differences in physical meat quality parameters, nutritional composition, lipid oxidation, or protein digestibility between control and BSFL-fed groups. Fatty acid analysis revealed higher concentrations of lauric and myristic acids in BSFL-fed chicken breast (p < 0.005), suggesting potential nutritional benefits from the supplement. The proteomic analysis also showed no significant differences in the expression of abundant proteins in the breast meat between groups, indicating minimal physiological impact of BSFL supplementation. Overall, this study provides reassurance to consumers and industries about the suitability of BSFL as a sustainable feed supplement for poultry that also offers potential benefits in terms of optimizing the fatty acid profile of chicken meat.
Collapse
Affiliation(s)
- Edoardo Fiorilla
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Marta Gariglio
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Francesco Gai
- Institute of Science of Food Production, National Research Council, Turin, Italy.
| | - Valeria Zambotto
- Department of Veterinary Sciences, University of Turin, Turin, Italy; Institute of Science of Food Production, National Research Council, Turin, Italy
| | | | | | - Rune Rødbotten
- Nofima AS-Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Shiori Koga
- Nofima AS-Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Anne Rieder
- Nofima AS-Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Erik Tengstrand
- Nofima AS-Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Sara Pozzo
- Institute of Sciences of Food Production, National Research Council, Milan, Italy
| | | | | | - Stefano Predieri
- Institute for BioEconomy, National Research Council, Bologna Italy
| | - Claudio Forte
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Turin, Turin, Italy; Institute of Science of Food Production, National Research Council, Turin, Italy
| |
Collapse
|
3
|
Alagappan S, Ma S, Nastasi JR, Hoffman LC, Cozzolino D. Evaluating the Use of Vibrational Spectroscopy to Detect the Level of Adulteration of Cricket Powder in Plant Flours: The Effect of the Matrix. SENSORS (BASEL, SWITZERLAND) 2024; 24:924. [PMID: 38339641 PMCID: PMC10857114 DOI: 10.3390/s24030924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Edible insects have been recognised as an alternative food or feed ingredient due to their protein value for both humans and domestic animals. The objective of this study was to evaluate the ability of both near- (NIR) and mid-infrared (MIR) spectroscopy to identify and quantify the level of adulteration of cricket powder added into two plant proteins: chickpea and flaxseed meal flour. Cricket flour (CKF) was added to either commercial chickpea (CPF) or flaxseed meal flour (FxMF) at different ratios of 95:5% w/w, 90:10% w/w, 85:15% w/w, 80:20% w/w, 75:25% w/w, 70:30% w/w, 65:35% w/w, 60:40% w/w, or 50:50% w/w. The mixture samples were analysed using an attenuated total reflectance (ATR) MIR instrument and a Fourier transform (FT) NIR instrument. The partial least squares (PLS) cross-validation statistics based on the MIR spectra showed that the coefficient of determination (R2CV) and the standard error in cross-validation (SECV) were 0.94 and 6.68%, 0.91 and 8.04%, and 0.92 and 4.33% for the ALL, CPF vs. CKF, and FxMF vs. CKF mixtures, respectively. The results based on NIR showed that the cross-validation statistics R2CV and SECV were 0.95 and 3.16%, 0.98 and 1.74%, and 0.94 and 3.27% using all the samples analyzed together (ALL), the CPF vs. CKF mixture, and the FxMF vs. CKF mixture, respectively. The results of this study showed the effect of the matrix (type of flour) on the PLS-DA data in both the classification results and the PLS loadings used by the models. The different combination of flours (mixtures) showed differences in the absorbance values at specific wavenumbers in the NIR range that can be used to classify the presence of CKF. Research in this field is valuable in advancing the application of vibrational spectroscopy as routine tools in food analysis and quality control.
Collapse
Affiliation(s)
- Shanmugam Alagappan
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia Campus, Brisbane, QLD 4072, Australia; (S.A.); (S.M.); (J.R.N.)
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Nutrition and Food Sciences, The University of Queensland, St. Lucia Campus, Brisbane, QLD 4072, Australia;
| | - Siyu Ma
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia Campus, Brisbane, QLD 4072, Australia; (S.A.); (S.M.); (J.R.N.)
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Nutrition and Food Sciences, The University of Queensland, St. Lucia Campus, Brisbane, QLD 4072, Australia;
| | - Joseph Robert Nastasi
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia Campus, Brisbane, QLD 4072, Australia; (S.A.); (S.M.); (J.R.N.)
| | - Louwrens C. Hoffman
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Nutrition and Food Sciences, The University of Queensland, St. Lucia Campus, Brisbane, QLD 4072, Australia;
| | - Daniel Cozzolino
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Nutrition and Food Sciences, The University of Queensland, St. Lucia Campus, Brisbane, QLD 4072, Australia;
| |
Collapse
|