1
|
Bertran A, De Zotti M, Timmel CR, Di Valentin M, Bowen AM. Determining and controlling conformational information from orientationally selective light-induced triplet-triplet electron resonance spectroscopy for a set of bis-porphyrin rulers. Phys Chem Chem Phys 2024; 26:2589-2602. [PMID: 38170870 PMCID: PMC10793979 DOI: 10.1039/d3cp03454b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/31/2023] [Indexed: 01/05/2024]
Abstract
We recently reported a new technique, light-induced triplet-triplet electron resonance (LITTER) spectroscopy, which allows quantification of the dipolar interaction between the photogenerated triplet states of two chromophores. Here we carry out a systematic LITTER study, considering orientation selection by the detection pulses, of a series of bis-porphyrin model peptides with different porphyrin-porphyrin distances and relative orientations. Orientation-dependent analysis of the dipolar datasets yields conformational information of the molecules in frozen solution which is in good agreement with density functional theory predictions. Additionally, a fast partial orientational-averaging treatment produces distance distributions with minimized orientational artefacts. Finally, by direct comparison of LITTER data to double electron-electron resonance (DEER) measured on a system with Cu(II) coordinated into the porphyrins, we demonstrate the advantages of the LITTER technique over the standard DEER methodology. This is due to the remarkable spectroscopic properties of the photogenerated porphyrin triplet state. This work sets the basis for the use of LITTER in structural investigations of unmodified complex biological macromolecules, which could be combined with Förster resonance energy transfer and microscopy inside cells.
Collapse
Affiliation(s)
- Arnau Bertran
- Centre for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK.
| | - Marta De Zotti
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
- Centro Interdipartimentale di Ricerca "Centro Studi di Economia e Tecnica dell'energia Giorgio Levi Cases", 35131 Padova, Italy.
| | - Christiane R Timmel
- Centre for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK.
| | - Marilena Di Valentin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
- Centro Interdipartimentale di Ricerca "Centro Studi di Economia e Tecnica dell'energia Giorgio Levi Cases", 35131 Padova, Italy.
| | - Alice M Bowen
- The National Research Facility for Electron Paramagnetic Resonance, Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
2
|
Bertran A, Morbiato L, Sawyer J, Dalla Torre C, Heyes DJ, Hay S, Timmel CR, Di Valentin M, De Zotti M, Bowen AM. Direct Comparison between Förster Resonance Energy Transfer and Light-Induced Triplet-Triplet Electron Resonance Spectroscopy. J Am Chem Soc 2023; 145:22859-22865. [PMID: 37839071 PMCID: PMC10603778 DOI: 10.1021/jacs.3c04685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Indexed: 10/17/2023]
Abstract
To carry out reliable and comprehensive structural investigations, the exploitation of different complementary techniques is required. Here, we report that dual triplet-spin/fluorescent labels enable the first parallel distance measurements by electron spin resonance (ESR) and Förster resonance energy transfer (FRET) on exactly the same molecules with orthogonal chromophores, allowing for direct comparison. An improved light-induced triplet-triplet electron resonance method with 2-color excitation is used, improving the signal-to-noise ratio of the data and yielding a distance distribution that provides greater insight than the single distance resulting from FRET.
Collapse
Affiliation(s)
- Arnau Bertran
- Centre
for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Laura Morbiato
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Jack Sawyer
- The
National Research Facility for Electron Paramagnetic Resonance, Department
of Chemistry, Manchester Institute of Biotechnology and Photon Science
Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Chiara Dalla Torre
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Derren J. Heyes
- The
National Research Facility for Electron Paramagnetic Resonance, Department
of Chemistry, Manchester Institute of Biotechnology and Photon Science
Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Sam Hay
- The
National Research Facility for Electron Paramagnetic Resonance, Department
of Chemistry, Manchester Institute of Biotechnology and Photon Science
Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Christiane R. Timmel
- Centre
for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Marilena Di Valentin
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
- Centro
Interdipartimentale di Ricerca “Centro Studi di Economia e
Tecnica dell’energia Giorgio Levi Cases”, 35131 Padova, Italy
| | - Marta De Zotti
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
- Centro
Interdipartimentale di Ricerca “Centro Studi di Economia e
Tecnica dell’energia Giorgio Levi Cases”, 35131 Padova, Italy
| | - Alice M. Bowen
- The
National Research Facility for Electron Paramagnetic Resonance, Department
of Chemistry, Manchester Institute of Biotechnology and Photon Science
Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
3
|
Scherer A, Yildirim B, Drescher M. The effect of the zero-field splitting in light-induced pulsed dipolar electron paramagnetic resonance (EPR) spectroscopy. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:27-46. [PMID: 37904801 PMCID: PMC10583298 DOI: 10.5194/mr-4-27-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/13/2023] [Indexed: 11/01/2023]
Abstract
Laser-induced magnetic dipole (LaserIMD) spectroscopy and light-induced double electron-electron resonance (LiDEER) spectroscopy are important techniques in the emerging field of light-induced pulsed dipolar electron paramagnetic resonance (EPR) spectroscopy (light-induced PDS). These techniques use the photoexcitation of a chromophore to the triplet state and measure its dipolar coupling to a neighboring electron spin, which allows the determination of distance restraints. To date, LaserIMD and LiDEER have been analyzed with software tools that were developed for a pair of two S = 1 / 2 spins and that neglected the zero-field splitting (ZFS) of the excited triplet. Here, we explore the limits of this assumption and show that the ZFS can have a significant effect on the shape of the dipolar trace. For a detailed understanding of the effect of the ZFS, a theoretical description for LaserIMD and LiDEER is derived, taking into account the non-secular terms of the ZFS. Simulations based on this model show that the effect of the ZFS is not that pronounced in LiDEER for experimentally relevant conditions. However, the ZFS leads to an additional decay in the dipolar trace in LaserIMD. This decay is not that pronounced in Q-band but can be quite noticeable for lower magnetic field strengths in X-band. Experimentally recorded LiDEER and LaserIMD data confirm these findings. It is shown that ignoring the ZFS in the data analysis of LaserIMD traces can lead to errors in the obtained modulation depths and background decays. In X-band, it is additionally possible that the obtained distance distribution is plagued by long distance artifacts.
Collapse
Affiliation(s)
- Andreas Scherer
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Berk Yildirim
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Malte Drescher
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|