1
|
Wang Z, Li L, Han J, Bai X, Wei B, Fan R. Combined metabolomics and bioactivity assays kernelby-productsof two native Chinese cherry species: The sources of bioactive nutraceutical compounds. Food Chem X 2024; 23:101625. [PMID: 39100251 PMCID: PMC11296007 DOI: 10.1016/j.fochx.2024.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
Cherry kernels are a by-product of cherries that are usually discarded, leading to waste and pollution. In this study, the chemical composition of 21 batches of cherry kernels from two different cherry species was analyzed using untargeted metabolomics. The in vitro antioxidant activity, cellular antioxidant activity, and antiproliferative activity of these kernel extracts were also determined, and a correlation analysis was conducted between differential compounds and biological activity. A total of 49 differential compounds were screened. The kernels of Prunus tomentosa were found to have significantly higher total phenol, total flavonoid content, and biological activity than those of Prunus pseudocerasus (P < 0.05). Correlation analysis showed that flavonoids had the greatest contribution to biological activity. The study suggests that both species of cherry kernel, particularly Prunus tomentosa, could be a potential source of bioactive compounds that could be used in the pharmaceutical, cosmetic, and food industries.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang 110122, China
| | - Lin Li
- Developing Pediatric department of Shengjing Hospital, China Medical University,No.36Sanhao Street, Shenyang 110000, China
| | - Jiaqi Han
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Xinyu Bai
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Binbin Wei
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang 110122, China
| | - Ronghua Fan
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
2
|
Harlina PW, Maritha V, Geng F, Nawaz A, Yuliana T, Subroto E, Dahlan HJ, Lembong E, Huda S. Comprehensive review on the application of omics analysis coupled with Chemometrics in gelatin authentication of food and pharmaceutical products. Food Chem X 2024; 23:101710. [PMID: 39206450 PMCID: PMC11350464 DOI: 10.1016/j.fochx.2024.101710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Gelatin is a protein molecule that can be hydrolyzed from collagen, animal bones, skin and it easily soluble in water. Source animals for gelatin ingredients must be evaluated, as well as their halal status. The omics method towards gelatin authentication in food and pharmaceutical products has several advantages, including high sensitivity and reliable data. Omics investigation employs the process of breaking down substances into small particles, hence enhancing the ability to detect a greater number of compounds. Omics study has the capability to identify substances at the subclass level, which makes it highly suitable for gelatin authentication. Gelatin lipids, metabolites, proteins, and volatile chemicals can be utilized as references to authenticate gelatin. In adopting gelatin authentication, lipidomics, metabolomics, proteomics, and volatilomics must be combined with chemometrics for data interpretation. Chemometrics can convert omics analysis data into easily viewable data. Chemometric approaches capable of presenting omics analysis data for gelatin authentication include PCA, HCA, PLS-DA, PLSR, SIMCA, and FACS. Visually chemometrically explain the differences in gelatin from different animal sources. The combination of omics analysis and chemometrics is a very promising technology for gelatin authentication in food and pharmaceutical products.
Collapse
Affiliation(s)
- Putri Widyanti Harlina
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363 Bandung, Indonesia
- Padjadjaran Halal Center, Universitas Padjadjaran, 45363 Bandung, Indonesia
| | - Vevi Maritha
- Pharmacy Study Program, Faculty of Health and Science, Universitas PGRI, Madiun, Indonesia
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Asad Nawaz
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China
| | - Tri Yuliana
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363 Bandung, Indonesia
| | - Edy Subroto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363 Bandung, Indonesia
| | - Havilah Jemima Dahlan
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363 Bandung, Indonesia
| | - Elazmanawati Lembong
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363 Bandung, Indonesia
| | - Syamsul Huda
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363 Bandung, Indonesia
| |
Collapse
|
3
|
Ben Hsouna A, Ben Akacha B, Generalić Mekinić I, Čmiková N, Ben Belgacem A, Bouteraa MT, Ben Saad R, Mnif W, Kluz MI, Kačániová M, Garzoli S. Insight into Pelargonium odoratissimum Essential Oil Preservative Properties Effect on Ground Beef. Foods 2024; 13:3181. [PMID: 39410216 PMCID: PMC11475644 DOI: 10.3390/foods13193181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Pelargonium plants are very popular and well-known for their essential oils (EOs), which are used for medicinal purposes and in food. This study focused on the EO of Pelargonium odoratissimum. First, its composition and antioxidant and antimicrobial activity were evaluated, and finally, its efficacy as a natural preservative in ground beef was tested. The main EO constituents were citronellol (40.0%), nerol (15.3%), and citronellyl formate (12.6%). The antibacterial activity of POEO showed that Enterococcus faecalis ATCC 29212 was the most susceptible strain compared to the other eight strains tested. The antioxidant activity, as measured by the DPPH assay, showed a dose-dependent effect with an IC50 comparable to the standard used, gallic acid. Aerobic plate count, psychotropic bacteria, and Enterobacteriaceae, including Salmonella, were reduced by the addition of Pelargonium odoratissimum essential oils. The oxidative stability was significantly improved compared to the untreated sample. Additionally, the results for metmyoglobin demonstrated a notable preservative effect on sensory properties, including appearance, odor, color, and overall acceptability. The ability to discriminate between all samples and correlate protein and lipid oxidation processes, microbiological characteristics, and sensory measurements was made possible by principal component analysis and heat maps. This research shows the potential benefits of using POEO in the preservation of ground beef by effectively extending shelf life and improving product safety.
Collapse
Affiliation(s)
- Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (A.B.H.); (B.B.A.); (A.B.B.); (M.T.B.); (R.B.S.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (A.B.H.); (B.B.A.); (A.B.B.); (M.T.B.); (R.B.S.)
| | - Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, 21000 Split, Croatia;
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Améni Ben Belgacem
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (A.B.H.); (B.B.A.); (A.B.B.); (M.T.B.); (R.B.S.)
| | - Mohamed Taieb Bouteraa
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (A.B.H.); (B.B.A.); (A.B.B.); (M.T.B.); (R.B.S.)
- Faculty of Sciences of Bizerte UR13ES47, University of Carthage, BP W, Bizerte 7021, Tunisia
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (A.B.H.); (B.B.A.); (A.B.B.); (M.T.B.); (R.B.S.)
| | - Wissem Mnif
- Department of Chemistry, College of Sciences at Bisha, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia;
| | - Maciej Ireneust Kluz
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01 043 Warszawa, Poland;
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01 043 Warszawa, Poland;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy;
| |
Collapse
|
4
|
Bai Y, Zhang H. The cluster analysis of traditional Chinese medicine authenticity identification technique assisted by chemometrics. Heliyon 2024; 10:e37479. [PMID: 39309934 PMCID: PMC11416282 DOI: 10.1016/j.heliyon.2024.e37479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
This study explore the authenticity identification technique of traditional Chinese medicine (TCM) using chemometrics in conjunction with cluster analysis. A clustering Gaussian mixture model was constructed and applied for the data clustering analysis of four types of TCM. Chemical measurements combined with discrete wavelet transform (DWT), Fourier transform infrared spectroscopy (FTIR), and Fourier self-deconvolution (FSD) were utilized for the detailed differentiation of Bupleurum scorzonerifolium, Bupleurum yinchowense, Bupleurum marginatum, and Bupleurum smithii Wolff var. parvifolium. Differences in the attenuated total reflection-FTIR (ATR-FTIR) spectra among the four TCMs were observed. Utilizing clustering algorithms, the one-dimensional DWT of the infrared spectra of samples was employed for the authentication of Chinese herbal medicines. The model demonstrates optimal performance throughout 2000 rounds of network training. The accuracy (88.6 %), sensitivity (86.5 %), and specificity (82.7 %) of the model constructed in this study significantly surpassed those of the CNN model: accuracy (67.7 %), sensitivity (70.4 %), and specificity (68.5 %) (P < 0.05). By setting the cluster size K = 5 and the number of Gaussian mixture model components to 5, the model effectively fits the actual number of categories within the dataset. Infrared spectroscopy analysis revealed distinct carbon-oxygen stretching vibration absorption peaks between 1025 and 1200 cm-1 for Bupleurum scorzonerifolium, Bupleurum yinchowense, Bupleurum marginatum, and Bupleurum smithii Wolff var. parvifolium, indicating strong absorption peaks of carbohydrates. A comprehensive structural information analysis revealed a similarity of above 0.982 among the four types of TCM. Combined with chemometrics and intelligent algorithm-based cluster analysis, successful and accurate authentication of TCM authenticity was achieved, providing an effective methodology for quality control in TCM.
Collapse
Affiliation(s)
- Yunxia Bai
- College of Computer Science and Technology, Baotou Medical College, Baotou, 014040, China
| | - Huiwen Zhang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, China
| |
Collapse
|
5
|
Liu P, Liu Z, Zhu J, Zhou H, Zhang G, Sun Z, Yajun Li, Zhou Z, Liu Y. Analysis of the lipidomic profile of vegetable oils and animal fats and changes during aging by UPLC-Q-exactive orbitrap mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4150-4159. [PMID: 38864437 DOI: 10.1039/d4ay00538d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Vegetable oil and animal fat residues are common evidence in the cases of homicide, arson, theft, and other crimes. However, the lipid composition and content changes during aging on complex carriers remain unclear. Therefore, this study dynamically monitored the lipid composition and content changes during aging of 13 different types of vegetable oils and animal fats on five different carriers using the UPLC-Q-Exactive Orbitrap MS method. A total of 6 subclasses of 93 lipids including lysophosphatidylcholine (2 species), phosphatidylcholine (2 species), diglyceride (5 species), triglyceride (81 species), acylGlcCampesterol ester (2 species), and acylGlcSitosterol ester (1 species), were first identified in fresh vegetable oils and animal fats. By comparing the LC-MS/MS chromatograms of fresh vegetable oils and animal fats, it was found that there were significant differences between the chromatograms of vegetable oils and animal fats, but it was difficult to distinguish between the chromatograms of vegetable oils or animal fats. After aging at 60 °C for 200 days, there was a significant decrease in the content of diglyceride, triglyceride, acylGlcCampesterol ester, and acylGlcSitosterol ester, while the content of lysophosphatidylcholine and phosphatidylcholine initially increased and then decreased. Furthermore, statistical analysis of lipid differences between vegetable oils and animal fats was performed using cluster heat maps, volcanic maps, PCA, and OPLS-DA. On average, 33 significantly different lipids were screened (VIP > 1, p < 0.05), which could serve as potential biomarkers for distinguishing vegetable oils and animal fats. It was found that the potential biomarkers still existed during aging of vegetable oils and animal fats (100 and 200 days). This research provides important reference information for the identification of vegetable oil and animal fat residues in complex carriers at crime scenes.
Collapse
Affiliation(s)
- Pingyang Liu
- People's Public Security University of China, Beijing 100038, China
| | - Zhanfang Liu
- Ministry of Public Security Institute of Forensic Science, Beijing 100038, China.
| | - Jun Zhu
- Ministry of Public Security Institute of Forensic Science, Beijing 100038, China.
| | - Hong Zhou
- Ministry of Public Security Institute of Forensic Science, Beijing 100038, China.
| | - Guannan Zhang
- Ministry of Public Security Institute of Forensic Science, Beijing 100038, China.
| | - Zhenwen Sun
- Ministry of Public Security Institute of Forensic Science, Beijing 100038, China.
| | - Yajun Li
- Ministry of Public Security Institute of Forensic Science, Beijing 100038, China.
| | - Zheng Zhou
- Ministry of Public Security Institute of Forensic Science, Beijing 100038, China.
| | - Yao Liu
- People's Public Security University of China, Beijing 100038, China
- Ministry of Public Security Institute of Forensic Science, Beijing 100038, China.
| |
Collapse
|