1
|
Yıldırım A, Aksoy T, Kayalar H, Balcıoğlu İC. Semen Cannabis and Oleum Hyperici: Antileishmanial activity against Leishmania tropica promastigotes and intracellular amastigotes. Parasitol Int 2024; 103:102950. [PMID: 39153658 DOI: 10.1016/j.parint.2024.102950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
The exploration of alternative agents and novel drug candidates for the effective treatment of cutaneous leishmaniasis has garnered significant attention, driven by the high cost, toxic effects, and the emergence of drug resistance associated with current therapeutic options. Plant extracts derived from Semen Cannabis, the seeds of the Cannabis sativa L. (hemp) plant, and Oleum Hyperici, the oily macerate of Hypericum perforatum L. (St. John's Wort) plant, were prepared by using solvents of varying polarity (n-hexane, chloroform, ethanol, and 60% aqueous ethanol). The primary objective of this study was to research in vitro and ex vivo antileishmanial efficacy of Semen Cannabis and Oleum Hyperici plant extracts against Leishmania tropica promastigotes and intracellular amastigotes. The efficacy of plant extracts against promastigotes were assessed using the cell counting by hemocytometer and the CellTiter-Glo assay. Additionally, their impact on infected THP-1 macrophages and the quantity of intracelluler amastigotes were investigated. Cytotoxicity was evaluated in THP-1 macrophages. Among the tested plant extracts, chloroform extract of Oleum Hyperici demonstrated significant antileishmanial activity against promastigotes (SI: 12.6) and intracellular amastigotes (SI: 16.8) of L. tropica without inducing cytotoxic effects and hold promise for further investigation as potential antileishmanial agents.
Collapse
Affiliation(s)
- Ahmet Yıldırım
- Manisa Celal Bayar University, Medical Faculty, Department of Parasitology, Manisa, Turkey
| | - Tülay Aksoy
- Manisa Celal Bayar University, Medical Faculty, Department of Parasitology, Manisa, Turkey.
| | - Hüsniye Kayalar
- University of Ege, Faculty of Pharmacy, Department of Pharmacognosy, İzmir, Turkey
| | | |
Collapse
|
2
|
Sundar S, Singh VK, Agrawal N, Singh OP, Kumar R. Investigational new drugs for the treatment of leishmaniasis. Expert Opin Investig Drugs 2024; 33:1029-1046. [PMID: 39225742 DOI: 10.1080/13543784.2024.2400139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/05/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Over the past 20 years, significant progress has been made in anti-leishmanial therapy. Three new drugs/formulations are available for the treatment of various forms of leishmaniasis, namely oral miltefosine, paromomycin and liposomal amphotericin B. However, these advances in drug development have added considerable complexity for clinicians including toxicity, emergence of resistance and decreased sensitivity of available drugs. The development of newer drugs with less toxicity and more efficacy is urgently needed. AREAS COVERED This review comprehensively examines the latest developments and current status of antileishmanial drugs for the treatment of leishmaniasis across the world. Several new investigational drugs that showed anti-leishmanial activity under in vitro or in vivo conditions and either underwent the phase-I/II clinical trials or are on the verge of entering the trials were reviewed. We also delve into the challenges of drug resistance and discuss the emergence of new and effective antileishmanial compounds. EXPERT OPINION The available treatments for leishmaniasis are limited in number, toxic, expensive, and demand extensive healthcare resources. Every available antileishmanial drug is associated with several disadvantages, such as drug resistance and toxicity or high cost. Miltefosine is potentially teratogenic. New antileishmanial drugs/treatment modalities are sorely needed for expanding future treatment options.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vishal Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Neha Agrawal
- Department of Medicine, University of Florida, Jacksonville, FL, USA
| | - Om Prakash Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Abdo BM, Asfaw BT, Choudhary MI, Yousuf S, Mengesha WA, Mekonnen SA. Bioassay-guided isolation of dehydrocostus lactone from Echinops kebericho as a leishmanicidal drug. Heliyon 2024; 10:e36818. [PMID: 39319168 PMCID: PMC11419915 DOI: 10.1016/j.heliyon.2024.e36818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Several strains of Leishmania parasite are involved in the occurrence of leishmaniasis infections, which makes its prevention and treatment very challenging. Currently, all forms of leishmaniasis are being treated with chemical drugs, which have limitations and adverse effects. Discovering antileishmanial agents from natural sources can lead to novel drugs against this dreadful disease. The essential oils and nonpolar solvent extracts of the roots of E. kebericho exhibit antileishmanial activity. Thus, the isolation of the leishmanicidal compounds from the roots of E. kebericho through a bioassay-guided technique was carried out in this study. The present finding showed that the essential oil and hexane fraction of crude extract from the roots of E. kebericho possessed significant leishmanicidal activity against L. major and L. tropica. Dehydrocostus lactone (1), one of the major constituents of the essential oil and hexane fraction, was more active than the standard drug miltefosine against L. major and L. tropica promastigotes. The presence of α-methylene, γ-lactone is the responsible moiety of dehydrocostus lactone towards the leishmanicidal activity against the tested Leishmania species. The MTT assay of dehydrocostus lactone showed inactive toxicity against the human cervical carcinoma HeLa cells. In addition, dehydrocostus lactone exhibits a broad spectrum of antibiotic activities. Based on this interesting finding, dehydrocostus lactone was identified as a potential lead for treating infections caused by Leishmania.
Collapse
Affiliation(s)
- Bekri Melka Abdo
- Wendo Genet Natural Product Research Laboratory, Ethiopian Institute of Agricultural Research, Addis Ababa, 2003, Ethiopia
| | | | - M. Iqbal Choudhary
- International Center for Chemical and Biological Science, University of Karachi, Karachi, 75270, Pakistan
| | - Sammer Yousuf
- International Center for Chemical and Biological Science, University of Karachi, Karachi, 75270, Pakistan
| | - Wendawek Abebe Mengesha
- Department of Molecular, Cellular, and Microbial Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Abate Mekonnen
- Food Science and Nutrition Research Process, Ethiopian Institute of Agricultural Research, Addis Ababa 2003, Ethiopia
| |
Collapse
|
4
|
Registre C, Silva LM, Registre F, Soares RDDOA, Rubio KTS, Carneiro SP, Dos Santos ODH. Targeting Leishmania Promastigotes and Amastigotes Forms through Amino Acids and Peptides: A Promising Therapeutic Strategy. ACS Infect Dis 2024; 10:2467-2484. [PMID: 38950147 DOI: 10.1021/acsinfecdis.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Millions of people worldwide are affected by leishmaniasis, caused by the Leishmania parasite. Effective treatment is challenging due to the biological complexity of the parasite, drug toxicity, and increasing resistance to conventional drugs. To combat this disease, the development of specific strategies to target and selectively eliminate the parasite is crucial. This Review highlights the importance of amino acids in the developmental stages of Leishmania as a factor determining whether the infection progresses or is suppressed. It also explores the use of peptides as alternatives in parasite control and the development of novel targeted treatments. While these strategies show promise for more effective and targeted treatment, further studies to address the remaining challenges are imperative.
Collapse
Affiliation(s)
- Charmante Registre
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Luciana Miranda Silva
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Farah Registre
- School of Medicine, Goiás Federal University, Goiânia, Goiás 74605-050, Brazil
| | - Rodrigo Dian de Oliveira Aguiar Soares
- Immunopathology Laboratory, Center for Research in Biological Sciences/NUPEB, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Karina Taciana Santos Rubio
- Toxicology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Simone Pinto Carneiro
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | | |
Collapse
|
5
|
Novitasari A, Rohmawaty E, Rosdianto AM. Physalis angulata Linn. as a medicinal plant (Review). Biomed Rep 2024; 20:47. [PMID: 38357237 PMCID: PMC10865294 DOI: 10.3892/br.2024.1735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/05/2024] [Indexed: 02/16/2024] Open
Abstract
There are numerous medicinal benefits from herbal plants, with many herbal medicines being used as 'Jamu', 'standardized herbal medicines' and phytopharmaceuticals. Physalis angulata Linn. (P. angulata L.), a plant utilized for both medicinal and food consumption purposes in a number of tropical and subtropical nations, is widely studied for its beneficial properties. The present review summarized the scientific evidence which suggested that P. angulata L. possesses antibacterial, anticancer, antiparasitic, anti-inflammatory, antifibrotic and antidiabetic properties. Furthermore, the various pharmacological studies that have been conducted utilizing in vivo and in vitro models, as well as the identification of phytochemical components with therapeutic value are described. In addition, the present review explained the solvents and the toxicity tests that were used for the investigation of P. angulata L. The authors aspire that this literature review will provide an overview for researchers regarding the scientific progress of P. angulata L. over the past ten years and the potential areas of future research.
Collapse
Affiliation(s)
- Ariyani Novitasari
- Magister Program of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java 45363, Indonesia
| | - Enny Rohmawaty
- Division of Pharmacology and Therapy, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java 45363, Indonesia
| | - Aziiz M Rosdianto
- Veterinary Medicine Program, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java 45363, Indonesia
| |
Collapse
|
6
|
Garduño-Félix KG, Rochín-Medina JJ, Murua-López CC, López-Moreno HS, Ramírez K. Biostimulated-sesame sprout extracts as potential agents against Leishmania mexicana. Lett Appl Microbiol 2023; 76:ovad115. [PMID: 37777833 DOI: 10.1093/lambio/ovad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023]
Abstract
Leishmania mexicana is one of the causal agents of cutaneous leishmaniasis. Current antileishmanial chemotherapeutics have demonstrated adverse side effects; thus, alternative treatments are needed. In this study, we performed in silico and in vitro analyses of the leishmanicidal potential of the most abundant phenolic compounds identified in black sesame sprouts biostimulated with Bacillus clausii. The molecular docking analysis showed strong interactions (binding free energies between -6.5 and -9.5 kcal/mol) of sesaminol 2-O-triglucoside, pinoresinol dihexoside, isoverbascoside, and apigenin with the arginase, leishmanolysin, cysteine peptidase B, and pyruvate kinase leishmanial enzymes. Furthermore, almost all phenolic compounds interacted with the active site residues of L. mexicana enzymes. In vitro, the B. clausii-biostimulated sprout phenolic extracts and apigenin inhibited the growth of promastigotes with IC50 values of 0.08 mg gallic acid equivalent/mL and 6.42 μM (0.0017 mg/mL), respectively. Additionally, in the macrophage infection model, cells treated with B. clausii-biostimulated sprout phenolic extracts and infected with L. mexicana exhibited significantly (P < 0.05) reduced nitric oxide production and decreased parasite burden. Altogether, our study provides important data related to high efficacy and less toxic natural antileishmanial candidates against promastigotes of L. mexicana.
Collapse
Affiliation(s)
- Karime G Garduño-Félix
- Laboratorio de Microbiología Molecular y Bioactivos, Tecnológico Nacional de México-Instituto Tecnológico de Culiacán, 80220 Culiacán, México
| | - Jesús J Rochín-Medina
- Laboratorio de Microbiología Molecular y Bioactivos, Tecnológico Nacional de México-Instituto Tecnológico de Culiacán, 80220 Culiacán, México
| | - Carolina C Murua-López
- CAC BB-UAS-264. Posgrados de la Facultad de Ciencias Químico-Biológicas, Universidad Autonóma de Sinaloa, 80030 Culiacán, México
| | - Héctor S López-Moreno
- CAC BB-UAS-264. Posgrados de la Facultad de Ciencias Químico-Biológicas, Universidad Autonóma de Sinaloa, 80030 Culiacán, México
| | - Karina Ramírez
- Laboratorio de Microbiología Molecular y Bioactivos, Tecnológico Nacional de México-Instituto Tecnológico de Culiacán, 80220 Culiacán, México
| |
Collapse
|
7
|
Pal R, Teli G, Akhtar MJ, Matada GSP. The role of natural anti-parasitic guided development of synthetic drugs for leishmaniasis. Eur J Med Chem 2023; 258:115609. [PMID: 37421889 DOI: 10.1016/j.ejmech.2023.115609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
Leishmaniasis is a parasitic disease and categorised as a neglected tropical disease (NTD). Each year, between 70,0000 and 1 million new cases are believed to occur. There are approximately 90 sandfly species which can spread the Leishmania parasites (over 20 species) causing 20,000 to 30,000 death per year. Currently, leishmaniasis has no specific therapeutic treatment available. The prescribed drugs with several drawbacks including high cost, challenging administration, toxicity, and drug resistance led to search for the alternative treatment with less toxicity and selectivity. Introducing the molecular features like that of phytoconstituents for the search of compounds with less toxicity is another promising approach. The current review classifies the synthetic compounds according to the core rings present in the natural phytochemicals for the development of antileishmanial agents (2020-2022). Considering the toxicity and limitations of synthetic analogues, natural compounds are at the higher notch in terms of effectiveness and safety. Synthesized compounds of chalcones (Compound 8; IC50: 0.03 μM, 4.7 folds more potent than Amphotericin B; IC50: 0.14 μM), pyrimidine (compound 56; against L. tropica; 0.04 μM and L. infantum; 0.042 μM as compared to glucantime: L. tropica; 8.17 μM and L. infantum; 8.42 μM), quinazoline and (compound 72; 0.021 μM, 150 times more potent than miltefosine). The targeted delivery against DHFR have been demonstrated by one of the pyrimidine compounds 62 with an IC50 value of 0.10 μM against L. major as compared to the standard trimethoprim (IC50: 20 μM). The review covers the medicinal importance of antileishmanial agents from synthetic and natural sources such as chalcone, pyrazole, coumarins, steroids, and alkaloidal-containing drugs (indole, quinolines, pyridine, pyrimidine, carbolines, pyrrole, aurones, and quinazolines). The efforts of introducing the core rings present in the natural phytoconstituents as antileishmanial in the synthetic compounds are discussed with their structural activity relationship. The perspective will support the medicinal chemists in refining and directing the development of novel molecules phytochemicals-based antileishmanial agents.
Collapse
Affiliation(s)
- Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Ghanshyam Teli
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PO 620, PC 130, Azaiba Bousher, Muscat, Sultanate of Oman
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| |
Collapse
|
8
|
Lamba S, Roy A. Demystifying the potential of inhibitors targeting DNA topoisomerases in unicellular protozoan parasites. Drug Discov Today 2023; 28:103574. [PMID: 37003515 DOI: 10.1016/j.drudis.2023.103574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/09/2023] [Accepted: 03/25/2023] [Indexed: 04/01/2023]
Abstract
DNA topoisomerases are a group of enzymes omnipresent in all organisms. They maintain the DNA topology during replication, repair, recombination, and transcription. However, the structure of topoisomerase in protozoan parasites differs significantly from that of human topoisomerases; thus, this enzyme acts as a crucial target in drug development against parasitic diseases. Although the therapeutic potential of drugs targeting the parasitic topoisomerase is well known, to manage the shortcomings of currently available therapeutics and the emergence of drug resistance, the discovery of novel antiparasitic molecules is an urgent need. In this review, we describe various investigational and repurposed topoisomerase inhibitors developed against protozoan parasites over the past few years. Teaser: Fatal parasitic diseases are an increasing cause for concern; here, we provide a compilation of different inhibitors targeting DNA topoisomerases, enzymes that are essential for, and unique to, protozoan parasites; therefore, inhibitors are efficient and have few adverse effects.
Collapse
Affiliation(s)
- Swati Lamba
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Amit Roy
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India.
| |
Collapse
|
9
|
Knight CA, Harris DR, Alshammari SO, Gugssa A, Young T, Lee CM. Leishmaniasis: Recent epidemiological studies in the Middle East. Front Microbiol 2023; 13:1052478. [PMID: 36817103 PMCID: PMC9932337 DOI: 10.3389/fmicb.2022.1052478] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/07/2022] [Indexed: 02/05/2023] Open
Abstract
Leishmaniasis, one of the most neglected tropical diseases (NTDs), is the third most important vector-borne disease worldwide. This disease has a global impact and severity of the infection and is greatest in the Middle East. The agent of infection is a protozoan parasite of the genus, Leishmania, and is generally transmitted by blood-sucking female sandflies. In humans, there are three clinical forms of infection: (1) cutaneous (CL), (2) mucocutaneous (ML), and (3) visceral leishmaniasis (VL). This review aims to discuss the current epidemiological status of leishmaniasis in Saudi Arabia, Iraq, Syria, and Yemen with a consideration of treatment options. The elevated risk of leishmaniasis is influenced by the transmission of the disease across endemic countries into neighboring non-infected regions.
Collapse
Affiliation(s)
| | - David R. Harris
- Department of Biology, Tuskegee University, Tuskegee, AL, United States
| | | | - Ayele Gugssa
- Department of Biology, Howard University, Washington, DC, United States
| | - Todd Young
- Department of Biology, Howard University, Washington, DC, United States
| | - Clarence M. Lee
- Department of Biology, Howard University, Washington, DC, United States
| |
Collapse
|
10
|
Orabi MAA, Alshahrani MM, Sayed AM, Abouelela ME, Shaaban KA, Abdel-Sattar ES. Identification of Potential Leishmania N-Myristoyltransferase Inhibitors from Withania somnifera (L.) Dunal: A Molecular Docking and Molecular Dynamics Investigation. Metabolites 2023; 13:metabo13010093. [PMID: 36677018 PMCID: PMC9861338 DOI: 10.3390/metabo13010093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Leishmaniasis is a group of infectious diseases caused by Leishmania protozoa. The ineffectiveness, high toxicity, and/or parasite resistance of the currently available antileishmanial drugs has created an urgent need for safe and effective leishmaniasis treatment. Currently, the molecular-docking technique is used to predict the proper conformations of small-molecule ligands and the strength of the contact between a protein and a ligand, and the majority of research for the development of new drugs is centered on this type of prediction. Leishmania N-myristoyltransferase (NMT) has been shown to be a reliable therapeutic target for investigating new anti-leishmanial molecules through this kind of virtual screening. Natural products provide an incredible source of affordable chemical scaffolds that serve in the development of effective drugs. Withania somnifera leaves, roots, and fruits have been shown to contain withanolide and other phytomolecules that are efficient anti-protozoal agents against Malaria, Trypanosoma, and Leishmania spp. Through a review of previously reported compounds from W. somnifera-afforded 35 alkaloid, phenolic, and steroid compounds and 132 withanolides/derivatives, typical of the Withania genus. These compounds were subjected to molecular docking screening and molecular dynamics against L. major NMT. Calycopteretin-3-rutinoside and withanoside IX showed the highest affinity and binding stability to L. major NMT, implying that these compounds could be used as antileishmanial drugs and/or as a scaffold for the design of related parasite NMT inhibitors with markedly enhanced binding affinity.
Collapse
Affiliation(s)
- Mohamed A. A. Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia
- Correspondence: or ; Tel.: +966-557398835
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt
- Center for Pharmaceutical Research and Innovation, Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Khaled A. Shaaban
- Center for Pharmaceutical Research and Innovation, Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - El-Shaymaa Abdel-Sattar
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| |
Collapse
|