1
|
Mlinarić Z, Turković L, Babić I, Silovski T, Kočevar Glavač N, Sertić M. Development, cross-validation and greenness assessment of capillary electrophoresis method for determination of ALP in pharmaceutical dosage forms - an alternative to liquid chromatography. RSC Adv 2024; 14:32876-32882. [PMID: 39429931 PMCID: PMC11487321 DOI: 10.1039/d4ra05715e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024] Open
Abstract
Breast cancer treatment has made tremendous progress in recent years and new therapies are emerging continuously. Alpelisib (ALP) is a novel phosphoinositide-3-kinase (PI3K) inhibitor recently approved for human receptor-positive, human epidermal growth factor receptor 2-negative, PIK3CA-mutated metastatic breast cancer in combination with fulvestrant. ALP has been the subject of only a limited number of preclinical in vitro and in vivo studies using different chromatographic techniques. However, no research has been published on analyzing ALP using capillary electrophoresis (CE). The absence of pharmacopoeial monographs for ALP in both the European and United States Pharmacopoeias highlights the urgent need to develop a reliable analytical method for its quality control in both industry and regulatory authorities. In this work, we have developed a first-ever CE method for the determination of ALP in pharmaceutical dosage forms in just 1.4 minutes. This was achieved with a 25 mM borate buffer at pH 9.3, 30 kV separation voltage and 30 °C capillary temperature. The proposed method was validated according to the ICH guidelines regarding selectivity, linearity (r = 0.9988), precision (RSD < 5.9%), accuracy (bias < 3.0%) and robustness (RSD < 3.2%). It was applied to the pharmaceutical dosage form of ALP and was shown to be suitable for the reliable determination of ALP. Furthermore, to demonstrate the applicability of the CE as an alternative technique to more commonly used HPLC in the analysis of drugs, cross-validation of CE and HPLC methods was performed. Bland-Altman analysis showed that the average difference in determined concentrations between CE and HPLC over a range of 10-100 μg mL-1 was 0.87 μg mL-1 (p = 0.6390, N = 19) meaning that there is no difference in the performance of CE and HPLC in the determination of ALP in pharmaceutical dosage forms. The environmental impact of both methods was assessed using AGREE software and scores for CE and HPLC were calculated to be 0.74 and 0.51, respectively. Because of equally reliable analytical performance and greener analysis, CE should be considered as an alternative technique to HPLC in the analysis of ALP pharmaceutical dosage forms.
Collapse
Affiliation(s)
- Zvonimir Mlinarić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Analysis Ante Kovačića 1 10000 Zagreb Croatia
| | - Lu Turković
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Analysis Ante Kovačića 1 10000 Zagreb Croatia
| | - Ivor Babić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Analysis Ante Kovačića 1 10000 Zagreb Croatia
| | - Tajana Silovski
- University Hospital Centre Zagreb, Department of Oncology Kišpatićeva 12 10000 Zagreb Croatia
- University of Zagreb School of Medicine Šalata 2 10000 Zagreb Croatia
| | - Nina Kočevar Glavač
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Biology Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Miranda Sertić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Analysis Ante Kovačića 1 10000 Zagreb Croatia
| |
Collapse
|
2
|
Shewale RS, Gomte SS, Jain A. A sustainable RP-HPLC method for concurrent estimation of capecitabine and celecoxib in liposomal formulation: Greenness and whiteness appraisal. Arch Pharm (Weinheim) 2024:e2400632. [PMID: 39344208 DOI: 10.1002/ardp.202400632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024]
Abstract
Liposomes have been reported for combination therapy due to their ability to carry both hydrophilic and lipophilic drugs together. The current investigation aims to develop a novel, eco-friendly, and sustainable reverse-phase high-performance liquid chromatography (RP-HPLC) method for the simultaneous quantification of capecitabine and celecoxib co-encapsulated in liposomes. The method reported herein uses a C18 column (4.6 × 250 mm2, 5 μm) and a mobile phase consisting of water, and acetonitrile/methanol in a ratio of 60:40, containing 0.1% formic acid in both the phases. The flow rate is maintained at 1 mL/min, with an injection volume of 10 μL in the gradient mode. Detection is set at λmax = 240 nm for capecitabine and 252 nm for celecoxib. The developed liposomes are mono-disperse with a surface potential of -6.93 mV. The average size of the liposomes is 142 nm. The percentage entrapment efficiency for capecitabine is 52.39 ± 0.94%, and for celecoxib, it is 77.13 ± 0.74%. The Analytical Greenness Metric of 0.61 and Analytical Eco-Scale Score of 75 signify the greenness of the developed method. Also, the Red-Green-Blue model shows excellent whiteness, with a score of 83.2. Thus, the developed method offers a reliable, accurate, precise, buffer-free, and environment-friendly RP-HPLC approach for the simultaneous analysis of capecitabine and celecoxib co-encapsulated in liposomes.
Collapse
Affiliation(s)
- Rushikesh Sanjay Shewale
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| |
Collapse
|
3
|
Jankech T, Gerhardtova I, Stefanik O, Chalova P, Jampilek J, Majerova P, Kovac A, Piestansky J. Current green capillary electrophoresis and liquid chromatography methods for analysis of pharmaceutical and biomedical samples (2019-2023) - A review. Anal Chim Acta 2024; 1323:342889. [PMID: 39182966 DOI: 10.1016/j.aca.2024.342889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 08/27/2024]
Abstract
Separation analytical methods, including liquid chromatography (LC) and capillary electrophoresis (CE), in combination with an appropriate detection technique, are dominant and powerful approaches preferred in the analysis of pharmaceutical and biomedical samples. Recent trends in analytical methods are focused on activities that push them to the field of greenness and sustainability. New approaches based on the implementation of greener solvents, non-hazardous chemicals, and reagents have grown exponentially. Similarly, recent trends are pushed in to the strategies based on miniaturization, reduction of wastes, avoiding derivatization procedures, or reduction of energy consumption. However, the real greenness of the analytical method can be evaluated only according to an objective and sufficient metric offering complex results taking into account all twelve rules of green analytical chemistry (SIGNIFICANCE mnemonic system). This review provides an extensive overview of papers published in the area of development of green LC and CE methods in the field of pharmaceutical and biomedical analysis over the last 5 years (2019-2023). The main focus is situated on the metrics used for greenness evaluation of the methods applied for the determination of bioactive agents. It critically evaluates and compares the demands of the real applicability of the methods in quality control and clinical environment with the requirements of the green analytical chemistry (GAC). Greenness and practicality of the summarized methods are re-evaluated or newly evaluated with the use of the dominant metrics tools, i.e., Analytical GREEnness (AGREE), Green Analytical Procedure Index (GAPI), Blue Applicability Grade Index (BAGI), and Sample Preparation Metric of Sustainability (SPMS). Moreover, general conclusions and future perspectives of the greening procedures and greenness evaluation metrics systems are presented. This paper should provide comprehensive information to analytical chemists, biochemists, and it can also represent a valuable source of information for clinicians, biomedical or quality control laboratories interested in development of analytical methods based on greenness, practicality, and sustainability.
Collapse
Affiliation(s)
- Timotej Jankech
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, SK-845 45, Bratislava, Slovak Republic; Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska Dolina, Ilkovicova 6, SK-842 15, Bratislava, Slovak Republic
| | - Ivana Gerhardtova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, SK-845 45, Bratislava, Slovak Republic; Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska Dolina, Ilkovicova 6, SK-842 15, Bratislava, Slovak Republic
| | - Ondrej Stefanik
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32, Bratislava, Slovak Republic; Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32, Bratislava, Slovak Republic
| | - Petra Chalova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32, Bratislava, Slovak Republic; Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, SK-845 45, Bratislava, Slovak Republic
| | - Josef Jampilek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, SK-845 45, Bratislava, Slovak Republic; Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska Dolina, Ilkovicova 6, SK-842 15, Bratislava, Slovak Republic
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, SK-845 45, Bratislava, Slovak Republic
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, SK-845 45, Bratislava, Slovak Republic
| | - Juraj Piestansky
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32, Bratislava, Slovak Republic; Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32, Bratislava, Slovak Republic.
| |
Collapse
|
4
|
Mlinarić Z, Turković L, Sertić M. Dispersive liquid-liquid microextraction followed by sweeping micellar electrokinetic chromatography-tandem mass spectrometry for determination of six breast cancer drugs in human plasma. J Chromatogr A 2024; 1718:464698. [PMID: 38354504 DOI: 10.1016/j.chroma.2024.464698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Herein, we have developed a novel method of aqueous-sample dispersive liquid-liquid microextraction (AqS-DLLME) followed by sweeping micellar electrokinetic chromatography-tandem mass spectrometry (MEKC-MS/MS) for simultaneous determination of breast cancer drugs letrozole, anastrozole, palbociclib, ribociclib, abemaciclib, and fulvestrant in human plasma. Coupling of MEKC to MS was possible due to the use of ammonium perfluorooctanoate (APFO) as a volatile surfactant. The MEKC and MS conditions were optimized to achieve a fast, sensitive, selective, and green analysis enabling full separation of the analytes within 16 min. Electrophoretic buffer was 125 mM APFO at apparent pH 10.5 in 32 % MeOH, while sheath liquid was 70 % MeOH with 0.2 % formic acid, delivered at 10 µL/min. Excellent extraction recoveries from plasma ranging from 89.4 to 104.9 % were obtained with a combination of protein precipitation and DLLME. The developed method was validated according to the ICH guidelines. Remarkable selectivity, accuracy (bias < 6.7 %), precision (RSD < 15.8 %), and stability (bias < 10.4 %) with insignificant matrix effect (RSD < 14.0 %) and no carry-over were obtained over a wide range of concentrations. Linearity with inter-day slope RSD lower than 8.7 % was demonstrated. With this method, very low concentrations could be detected after the injection of only 68.7 nL of the sample. The method was applied to plasma samples from six women currently receiving breast cancer treatment. Determined concentrations of the drugs of interest agreed with concentrations found in clinical studies, thus proving the suitability of the developed method for therapeutic drug monitoring as a superior alternative to published LC-MS methods.
Collapse
Affiliation(s)
- Zvonimir Mlinarić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Analysis, 10000 Zagreb, Croatia
| | - Lu Turković
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Analysis, 10000 Zagreb, Croatia
| | - Miranda Sertić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Analysis, 10000 Zagreb, Croatia.
| |
Collapse
|
5
|
Turković L, Mutavdžić Pavlović D, Mlinarić Z, Skenderović A, Silovski T, Sertić M. Optimisation of Solid-Phase Extraction and LC-MS/MS Analysis of Six Breast Cancer Drugs in Patient Plasma Samples. Pharmaceuticals (Basel) 2023; 16:1445. [PMID: 37895916 PMCID: PMC10610126 DOI: 10.3390/ph16101445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
In the development of bioanalytical LC-MS methods for the determination of drugs in plasma samples in a clinical setting, adequate sample preparation is of utmost importance. The main goals are to achieve the selective extraction of the analytes of interest and attain thorough matrix removal while retaining acceptable ecological properties, cost-effectiveness, and high throughput. Solid-phase extraction (SPE) offers a versatile range of options, from the selection of an appropriate sorbent to the optimisation of the washing and elution conditions. In this work, the first SPE method for the simultaneous extraction of six anticancer drugs used in novel therapeutic combinations for advanced breast cancer treatment-palbociclib, ribociclib, abemaciclib, anastrozole, letrozole, and fulvestrant-was developed. The following sorbent chemistries were tested: octylsilyl (C8), octadecylsilyl (C18), hydrophilic-lipophilic balance (HLB), mixed-mode cation-exchange (MCX and X-C), and mixed-mode weak cation-exchange (WCX), with different corresponding elution solvents. The samples were analysed using LC-MS/MS, with a phenyl column (150 × 4.6 mm, 2.5 μm). The best extraction recoveries (≥92.3%) of all analytes were obtained with the C8 phase, using methanol as the elution solvent. The optimised method was validated in the clinically relevant ranges, showing adequate precision (inter-day RSD ≤ 14.3%) and accuracy (inter-day bias -12.7-13.5%). Finally, its applicability was successfully proven by the analysis of samples from breast cancer patients.
Collapse
Affiliation(s)
- Lu Turković
- Department of Pharmaceutical Analysis, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovacica 1, 10000 Zagreb, Croatia (Z.M.)
| | - Dragana Mutavdžić Pavlović
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulicev trg 20, 10000 Zagreb, Croatia;
| | - Zvonimir Mlinarić
- Department of Pharmaceutical Analysis, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovacica 1, 10000 Zagreb, Croatia (Z.M.)
| | - Anamarija Skenderović
- GxR&D Analytics Zagreb, Global R&D, Teva Pharmaceuticals, Prilaz Baruna Filipovica 25, 10000 Zagreb, Croatia;
| | - Tajana Silovski
- Department of Oncology, University Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia;
- School of Medicine, University of Zagreb, Salata 3, 10000 Zagreb, Croatia
| | - Miranda Sertić
- Department of Pharmaceutical Analysis, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovacica 1, 10000 Zagreb, Croatia (Z.M.)
| |
Collapse
|
6
|
Turković L, Koraj N, Mlinarić Z, Silovski T, Crnković S, Sertić M. Optimisation of dispersive liquid-liquid microextraction for plasma sample preparation in bioanalysis of CDK4/6 inhibitors in therapeutic combinations for breast cancer treatment. Heliyon 2023; 9:e18880. [PMID: 37593626 PMCID: PMC10432171 DOI: 10.1016/j.heliyon.2023.e18880] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
Cyclin D dependent kinase 4 and 6 (CDK 4/6) inhibitors are novel anticancer drugs used in therapeutic combinations with endocrine therapy for breast cancer treatment. Their determination in patient plasma is of high interest as a prerequisite for possible therapeutic drug monitoring. Dispersive liquid-liquid microextraction (DLLME) shows great potential in bioanalytical sample preparation. Its simplicity and speed, along with the suitability for using small amounts of sample and hazardous solvents are some of its main advantages. However, its application on plasma samples is scarce and requires further development. The aim of this work was to explore the applicability of DLLME in the simultaneous extraction of six drugs of interest from human plasma, with an emphasis placed on achieving high extraction recoveries with low sample and solvent consumption. To tackle the low availability and amount of the plasma sample, as well as the complexity of the biological matrix, three novel DLLME modes are proposed: organic sample DLLME (OrS-DLLME), aqueous sample DLLME (AqS-DLLME), and a modified air-assisted DLLME (AA-DLLME). The extractant and disperser type and volume, volume ratios of all the components in the ternary system, effect of pH and salting out were optimised for all three proposed modes of DLLME. Optimised representative DLLME-HPLC-DAD-FLD method was validated and shown to be linear (R > 0.994), precise (RSD ≤13.8%, interday), accurate (bias -13.1-13.1%, interday) and robust (relative effect -3.34-6.08%). Simultaneous extraction of all six drugs with high recoveries (81.65-95.58%) was achieved. Sample volumes used were as low as 50-100 μL, with necessary organic solvent volumes in μL ranges. Greenness scores obtained using the AGREE software were between 0.63 and 0.66, demonstrating compliance with green analytical chemistry principles. Finally, the validated method was successfully applied on breast cancer patient plasma samples.
Collapse
Affiliation(s)
- Lu Turković
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Analysis, Zagreb, Croatia
| | - Natan Koraj
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Analysis, Zagreb, Croatia
| | - Zvonimir Mlinarić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Analysis, Zagreb, Croatia
| | - Tajana Silovski
- Department of Oncology, University Hospital Centre Zagreb, Zagreb, Croatia
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Slaven Crnković
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute for Lung Health, Justus Liebig University, Giessen, Germany
| | - Miranda Sertić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Analysis, Zagreb, Croatia
| |
Collapse
|
7
|
AlThikrallah MKI, Idris AM, Elbashir AA, Elgorashe REE, Buzid A, Alnajjar AO. Development of Capillary Zone Electrophoresis Method for the Simultaneous Separation and Quantification of Metformin and Pioglitazone in Dosage Forms; and Comparison with HPLC Method. Molecules 2023; 28:1184. [PMID: 36770850 PMCID: PMC9919060 DOI: 10.3390/molecules28031184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
A capillary zone electrophoretic (CZE) method was developed, validated, and applied for the assay of metformin (MET) and pioglitazone (PIO) in pharmaceutical formulations. The optimum running buffer composition was found to be 75 mmol/L phosphate buffer containing 30% acetonitrile (ACN) at pH 4.0. The optimum instrumental conditions were found to be injection time, 10 s; applied voltage, 25 kV; hydrodynamic injection pressure, 0.5 psi for 10 s, capillary temperature, 25 °C; and the detection wavelength, 210 nm. The quantifications were calculated based on the ratio of the peak areas of analytes to atenolol as an internal standard. The CZE method was validated in terms of accuracy (98.21-104.81%), intra- and inter-day precision of migration time and peak area (relative standard deviation ≤ 5%), linearity (correlation coefficients ≥ 0.9985), limit of detection (≤0.277 μg/mL), and limit of quantitation (≤0.315 μg/mL). The proposed method was applied for the analysis of PIO and MET both individually and in a combined dosage tablet formulation. All electrophoretic parameters were calculated and evaluated. A previously reported high-performance liquid chromatographic (HPLC) method was also applied to the same samples. A comprehensive comparison was then carried out for the analytical features of both methods CZE and HPLC. Comparable results were obtained with the advantage of reagent consumption and separation efficiency of CZE over HPLC and shorter analysis time by HPLC compared with CZE.
Collapse
Grants
- This research was supported by Deanship of Scientific Research, King Faisal University, Hofuf, Saudi Arabia (GRNT 2151) This research was supported by Deanship of Scientific Research, King Faisal University, Hofuf, Saudi Arabia (GRNT 2151)
- This research was supported by Deanship of Scientific Research, King Faisal University, Hofuf, Saudi Arabia (GRNT 2151) This research was supported by Deanship of Scientific Research, King Faisal University, Hofuf, Saudi Arabia (GRNT 2151)
Collapse
Affiliation(s)
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| | - Abdalla Ahmed Elbashir
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Rafea E. E. Elgorashe
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Alyah Buzid
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ahmed O. Alnajjar
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|