1
|
Yadav H, Maiti S. Locust bean gum glutarate nanocomposite hydrogel microspheres of gliclazide: Optimization by box-Behnken design and preclinical evaluation of anti-diabetic efficacy. Int J Biol Macromol 2024:136963. [PMID: 39490492 DOI: 10.1016/j.ijbiomac.2024.136963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
In this study, carboxymethyl locust bean gum was synthesized and nanocomposite hydrogel microspheres (GHMs) of gliclazide were produced based on nanosilicate reinforcement and aluminium-ion driven gelation process, followed by covalent crosslinking with glutaric anhydride (GA). The effect of three independent variables (polymer and GA concentration, incubation time) on the drug entrapment efficiency (DEE%) and percent drug release at 8 h, was optimized using Box-Behnken design. The highest DEE (%) and lowest drug release was achieved at the following optimized conditions: polymer (2.43 %), GA (0.34 %), and incubation (27 min). The nanoscilicate-enriched matrix provided a maximum of 75.13 % DEE, 92.33 % gel fraction, and excellent flowability. The optimized microspheres had virtually spherical morphology, according to FE-SEM analysis. FTIR study indicated a hydrogen bonding interaction between the drug and other formulation components. X-ray and DSC measurements suggested that the crystallinity of the drug decreased following integration into the matrix. The optimized GHM demonstrated anomalous diffusion of gliclazide in simulated gastrointestinal fluids for 12 h without disintegration. In streptozotocin (50 mg/kg BW)-induced diabetic rats, the optimized formulation diminished blood glucose level by about 72 % in 12 h. Thus, the nanocomposite GHMs created by combining nanosilicate with GA had an outstanding potential for long-term control of diabetes.
Collapse
Affiliation(s)
- Harsh Yadav
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| | - Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India.
| |
Collapse
|
2
|
Esposito L, Casolani N, Ruggeri M, Spizzirri UG, Aiello F, Chiodo E, Martuscelli M, Restuccia D, Mastrocola D. Sensory Evaluation and Consumers' Acceptance of a Low Glycemic and Gluten-Free Carob-Based Bakery Product. Foods 2024; 13:2815. [PMID: 39272580 PMCID: PMC11395674 DOI: 10.3390/foods13172815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Carob pulp flour has antidiabetic and antioxidant activities, is naturally sweet, and is rich in fibers. It is obtained from carob pod pulp from the evergreen tree Ceratonia siliqua L., which is grown in Mediterranean areas and is known for locust bean gum production. Despite its valuable effects on health, such as the modulation of the glycemic index, this ingredient has a tremendous impact on technological and hedonic features, mainly on color, flavor, and texture. In this paper, the qualitative features and consumers' acceptance of a carob-based gluten-free bakery product where rice flour was substituted at 40% with carob pulp flour were studied. A panel group of experts described the bread as dark, quite dense, sweet, aromatic, and with a limited bubble dispersion. On the other hand, the sensory assessment and the willingness to pay of consumers were assessed in two groups (a fully informed one about heathy attributes of the food and a blind one). The results indicated a moderate appreciation of the overall quality of the product (average score between 4 and 5 points on a 9-point Likert scale). The information about the food's healthy properties and the ability to maintain a low glycemic index did not enhance the consumers' perception of the product, while previous knowledge and involvement in the product consumption were perceived to have primary importance regarding the final consumers' choice. Finally, an accelerated shelf-life test was run on the packaged snack to evaluate the general quality and stability. The protective packaging helped in limiting bread decay and maintaining the textural characteristics.
Collapse
Affiliation(s)
- Luigi Esposito
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Nicola Casolani
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Marco Ruggeri
- Department of Management, Sapienza University of Rome, Via del Castro Laurenziano 9, 00161 Rome, Italy
| | | | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Emilio Chiodo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Maria Martuscelli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Donatella Restuccia
- Department of Management, Sapienza University of Rome, Via del Castro Laurenziano 9, 00161 Rome, Italy
| | - Dino Mastrocola
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
3
|
Sana SS, Raorane CJ, Venkatesan R, Roy S, Swain SK, Kim SC, Al-Tabakha M, Bhandare RR, Raj V, Lee S. State-of-the-art progress on locust bean gum polysaccharide for sustainable food packaging and drug delivery applications: A review with prospectives. Int J Biol Macromol 2024; 275:133619. [PMID: 38964694 DOI: 10.1016/j.ijbiomac.2024.133619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Locust bean gum (LBG), a polysaccharide-based natural polymer, is being widely researched as an appropriate additive for various products, including food, gluten-free formulations, medicines, paper, textiles, oil well drilling, cosmetics, and medical uses. Drug delivery vehicles, packaging, batteries, and catalytic supports are all popular applications for biopolymer-based materials. This review discusses sustainable food packaging and drug delivery applications for LBG. Given the benefits of LBG polysaccharide as a source of dietary fiber, it is also being investigated as a potential treatment for many health disorders, including colorectal cancer, diabetes, and gastrointestinal difficulties. The flexibility of LBG polysaccharide allows it to form hydrogen bonds with water molecules, a crucial characteristic of biomaterials, and the film-forming properties of LBG are critical for food packaging applications. The extraction process of LBG plays an important role in properties such as viscosity and gel-forming properties. Moreover, there are multiple factors such as temperature, pressure, pH, etc. The LBG-based functional composite film is effective in improving the shelf life as well as monitoring the freshness of fruits, meat and other processed food. The LBG-based hydrogel is excellent carrier of drugs and can be used for slow and sustainable release of active components present in drugs. Thus, the primary goal of this review was to conduct a comprehensive evaluation of the literature with a focus on the composition, properties, processing, food packaging, and medicine delivery applications of LBG polysaccharides. Thus, we investigated the chemical composition, extraction, and characteristics of LBG polysaccharides that underlie their applications in the food packaging and medicine delivery fields.
Collapse
Affiliation(s)
- Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| | | | - Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sarat K Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Orissa, India
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea.
| | - Moawia Al-Tabakha
- College of Pharmacy & Health Sciences, Ajman University, PO Box 340, Ajman, United Arab Emirates; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Richie R Bhandare
- College of Pharmacy & Health Sciences, Ajman University, PO Box 340, Ajman, United Arab Emirates; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Vinit Raj
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Sundram S, Dhiman N, Malviya R, Awasthi R. Synthesis of Novel Acrylamide Graft Copolymer of Acacia nilotica Gum for the Stabilization of Melatonin Nanoparticles for Improved Therapeutic Effect: Optimization Using (3) 2 Factorial Design. Assay Drug Dev Technol 2024; 22:278-307. [PMID: 38962889 DOI: 10.1089/adt.2024.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
The objective of the present study was to optimize the microwave-assisted synthesis of the acrylamide graft copolymer of Acacia nilotica gum (AM-co-ANG). Furthermore, graft copolymer was used for the formulation of a nanoparticulate system using a novel top to bottom solvent antisolvent technique for the delivery of melatonin. Grafting of ANG was optimized by using 32 factorial design, where concentrations of polymer and monomer (acrylamide) were used as independent variables and swelling index in acidic (0.1 N HCl) and basic (1 N NaOH) pH. Grafted polymers were further used to develop and optimize nanoparticulate system using concentration of the graft copolymer and concentration of drug as independent variables. The size of the nanoformulation and entrapment efficiency were selected as dependent variables. Difference in infrared spectrum and absorbance maxima in the ultraviolet region confirm that grafting has taken place. Porous structure and a higher contact angle confirmed hydrophobic nature of AM-co-ANG as compared with the native polymer. Acrylamide graft copolymers show more swelling in 1 N NaOH as compared with 0.1 N HCl. In vitro toxicity studies in hepatic (HepG2 cell line), brain (SHSY5Y cell line), and skin (HaCaT cell line) cells easily predict that synthesized polymer have no cytotoxicity. The entrapment efficiency ranged from 55.24 ± 1.35% to 73.21 ± 1.83%. A nonlinear correlation was observed between independent and dependent variables, as confirmed by multivariate analysis of variance, surface regression, and the correlation report. The prepared formulations were able to release drug up to 12 h. The regression coefficient easily predicted that most of the formulations followed Baker-Lonsdale drug release kinetics.
Collapse
Affiliation(s)
- Sonali Sundram
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Neerupma Dhiman
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, India
| |
Collapse
|
5
|
Alves LTDO, Fronza P, Gonçalves I, da Silva WA, Oliveira LS, Franca AS. Development of Polymeric Films Based on Sunflower Seed Proteins and Locust Bean Gum. Polymers (Basel) 2024; 16:1905. [PMID: 39000760 PMCID: PMC11244352 DOI: 10.3390/polym16131905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
Most polymeric food packaging materials are non-biodegradable and derived from petroleum, thus recent studies have focused on evaluating alternative biodegradable materials from renewable sources, with polysaccharides and proteins as the main types of employed biopolymers. Therefore, this study aimed to develop biopolymeric films based on sunflower proteins and galactomannans from locust bean gum. The influence of the galactomannan amount (0.10%, 0.30%, 0.50%, and 0.75% w/v) on the physicochemical, thermal, and mechanical properties of cast sunflower protein-based films was studied. Sunflower proteins gave rise to yellowish, shining, and translucid films. With the incorporation of locust bean gum-derived galactomannans, the films became more brown and opaque, although they still maintained some translucency. Galactomannans significantly changed the proteins' secondary structures, giving rise to films with increased tensile resistance and stretchability. Nevertheless, the increase in the galactomannan amount did not have a significant effect on the film's thermal stability. The protein/galactomannan-based films showed values of water vapor and oxygen permeability that were slightly higher than those of the pristine materials. Overall, blending locust bean gum galactomannans with sunflower proteins was revealed to be a promising strategy to develop naturally colored and translucid films with enhanced mechanical resistance while maintaining flexibility, fitting the desired properties for biodegradable food packaging materials.
Collapse
Affiliation(s)
- Layla Talita de Oliveira Alves
- Programa de Pós-Graduação em Ciência de Alimentos, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (L.T.d.O.A.); (P.F.); (L.S.O.)
| | - Pãmella Fronza
- Programa de Pós-Graduação em Ciência de Alimentos, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (L.T.d.O.A.); (P.F.); (L.S.O.)
| | - Idalina Gonçalves
- CICECO—Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Washington Azevêdo da Silva
- Departamento de Engenharia de Alimentos, Universidade Federal de São João Del-Rei, Rodovia MG 424, km 47, Campus Sete Lagoas, Sete Lagoas 35701-970, MG, Brazil;
| | - Leandro S. Oliveira
- Programa de Pós-Graduação em Ciência de Alimentos, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (L.T.d.O.A.); (P.F.); (L.S.O.)
- Departamento de Engenharia Mecânica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Adriana S. Franca
- Programa de Pós-Graduação em Ciência de Alimentos, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (L.T.d.O.A.); (P.F.); (L.S.O.)
- Departamento de Engenharia Mecânica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
6
|
Akpo E, Colin C, Perrin A, Cambedouzou J, Cornu D. Encapsulation of Active Substances in Natural Polymer Coatings. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2774. [PMID: 38894037 PMCID: PMC11173946 DOI: 10.3390/ma17112774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Already used in the food, pharmaceutical, cosmetic, and agrochemical industries, encapsulation is a strategy used to protect active ingredients from external degradation factors and to control their release kinetics. Various encapsulation techniques have been studied, both to optimise the level of protection with respect to the nature of the aggressor and to favour a release mechanism between diffusion of the active compounds and degradation of the barrier material. Biopolymers are of particular interest as wall materials because of their biocompatibility, biodegradability, and non-toxicity. By forming a stable hydrogel around the drug, they provide a 'smart' barrier whose behaviour can change in response to environmental conditions. After a comprehensive description of the concept of encapsulation and the main technologies used to achieve encapsulation, including micro- and nano-gels, the mechanisms of controlled release of active compounds are presented. A panorama of natural polymers as wall materials is then presented, highlighting the main results associated with each polymer and attempting to identify the most cost-effective and suitable methods in terms of the encapsulated drug.
Collapse
Affiliation(s)
| | | | | | - Julien Cambedouzou
- IEM, Université de Montpellier, CNRS, ENSCM, F-34095 Montpellier, France
| | - David Cornu
- IEM, Université de Montpellier, CNRS, ENSCM, F-34095 Montpellier, France
| |
Collapse
|
7
|
Mandal S, Chi H, Moss RE, Dhital P, Babatunde EO, Gurav R, Hwang S. Seed gum-based polysaccharides hydrogels for sustainable agriculture: A review. Int J Biol Macromol 2024; 263:130339. [PMID: 38387640 DOI: 10.1016/j.ijbiomac.2024.130339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Globally, water scarcity in arid and semiarid regions has become one of the critical issues that hinder sustainable agriculture. Agriculture, being a major water consumer, presents several challenges that affect water availability. Hydrogels derived from polysaccharides seed gums are hydrophilic polymers capable of retaining substantial moisture in their three-dimensional network and releasing it back into the soil during drought conditions. Implementation of hydrogels in the agricultural sectors enhances soil health, plant growth, and crop yield. Furthermore, the soil permeability, density, structure, texture, and rate of evaporation and percolation of water are modified by hydrogel. In this review, hydrogels based on natural plant seed gum like guar, fenugreek, Tara and locust beans have been discussed in terms of their occurrence, properties, chemical structure, method of synthesis, and swelling behavior. The focus extends to recent applications of modified seed gum-based natural hydrogels in agriculture, serving as soil conditioners and facilitating nutrient delivery to growing plants. The swelling behavior and inherent structure of these hydrogels can help researchers unravel their maximum possibilities to promote sustainable agriculture and attenuate the obstacles propounded by our dynamic nature. The current review also examines market growth, prospects, and challenges of eco-friendly hydrogels in recent times.
Collapse
Affiliation(s)
- Sujata Mandal
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA.
| | - Hyemein Chi
- Department of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
| | - Rhiannon E Moss
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
| | - Prabin Dhital
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
| | - Eunice O Babatunde
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
| | - Ranjit Gurav
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
| | - Sangchul Hwang
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA.
| |
Collapse
|
8
|
Darya GH, Zare O, Karbalaei-Heidari HR, Zeinali S, Sheardown H, Rastegari B. Enzyme-responsive mannose-grafted magnetic nanoparticles for breast and liver cancer therapy and tumor-associated macrophage immunomodulation. Expert Opin Drug Deliv 2024; 21:663-677. [PMID: 38680108 DOI: 10.1080/17425247.2024.2347300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/04/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Chemo-immunotherapy modifies the tumor microenvironment to enhance the immune response and improve chemotherapy. This study introduces a dual-armed chemo-immunotherapy strategy combating breast tumor progression while re-polarizing Tumor-Associated Macrophage (TAM) using prodigiosin-loaded mannan-coated magnetic nanoparticles (PG@M-MNPs). METHODS The physicochemical properties of one-step synthetized M-MNPs were analyzed, including X-ray diffraction, FTIR, DLS, VSM, TEM, zeta potential analysis, and drug loading content were carried out. Biocompatibility, cancer specificity, cellular uptake, and distribution of PG@M-MNPs were investigated using fluorescence and confocal laser scanning microscopy, and flow cytometry. Furthermore, the expression levels of IL-6 and ARG-1 after treatment with PG and PG@M-MNPs on M1 and M2 macrophage subsets were studied. RESULTS The M-MNPs were successfully synthesized and characterized, demonstrating a size below 100 nm. The release kinetics of PG from M-MNPs showed sustained and controlled patterns, with enzyme-triggered release. Cytotoxicity assessments revealed an enhanced selectivity of PG@M-MNPs against cancer cells and minimal effects on normal cells. Additionally, immuno-modulatory activity demonstrates the potential of PG@M-MNPs to change the polarization dynamics of macrophages. CONCLUSION These findings highlight the potential of a targeted approach to breast cancer treatment, offering new avenues for improved therapeutic outcomes and patient survival.
Collapse
Affiliation(s)
- Gholam Hossein Darya
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Science, Shiraz, Iran
| | - Omid Zare
- Department of Biology, Islamic Azad University, Tehran, Iran
| | - Hamid Reza Karbalaei-Heidari
- Molecular Biotechnology Lab, Department of Biology, Faculty of Science, Shiraz University, Shiraz, Iran
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Sedighe Zeinali
- Department of Nanochemical Engineering, School of Advanced Technologies, Nanotechnology Research Institute, Shiraz University, Shiraz, Iran
| | - Heather Sheardown
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Banafsheh Rastegari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Jiang H, Zhang T, Pan Y, Yang H, Xu X, Han J, Liu W. Thermal stability and in vitro biological fate of lactoferrin-polysaccharide complexes. Food Res Int 2024; 182:114182. [PMID: 38519194 DOI: 10.1016/j.foodres.2024.114182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
Lactoferrin (LF) is a thermally sensitive iron-binding globular glycoprotein. Heat treatment can induce its denaturation and aggregation and thus affect its functional activity. In this study, carrageenan (CG), xanthan gum (XG) and locust bean gum (LBG), allowed to apply in infant food, were used to form protein-polysaccharide complexes to improve the thermal stability of LF. Meanwhile, in vitro simulated infant digestion and absorption properties of LF were also estimated. The results showed that the complexes formed by CG and XG with LF (LF-CG and LF-XG) could significantly inhibit the loss of α-helix structure of LF against heating. LF-CG and LF-LBG could protect LF from digestion in simulated infant gastric fluid and slow down the degradation of LF under the simulated intestinal conditions. Besides, LF, LF-CG and LF-XG showed no adverse effects on the growth of Caco-2 cells in the LF concentration range of 10-300 μg/mL, and LF-XG exhibited better beneficial to improve the cell uptake of the digestive product than the other protein-polysaccharides at the LF concentration of 100 µg/mL. This study may provide a reference for the enhancement of thermal processing stability of LF and development infant food ingredient with high nutrients absorption efficiency in the gastrointestinal environment in the future.
Collapse
Affiliation(s)
- Hanyun Jiang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Tingting Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yujie Pan
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hui Yang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiankang Xu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jianzhong Han
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weilin Liu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
10
|
Putro JN, Soetaredjo FE, Lunardi VB, Irawaty W, Yuliana M, Santoso SP, Puspitasari N, Wenten IG, Ismadji S. Polysaccharides gums in drug delivery systems: A review. Int J Biol Macromol 2023; 253:127020. [PMID: 37741484 DOI: 10.1016/j.ijbiomac.2023.127020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
For the drug delivery system, drug carriers' selection is critical to the drug's success in reaching the desired target. Drug carriers from natural biopolymers are preferred over synthetic materials due to their biocompatibility. The use of polysaccharide gums in the drug delivery system has received considerable attention in recent years. Polysaccharide gums are renewable resources and abundantly found in nature. They could be isolated from marine algae, microorganisms, and higher plants. In terms of carbohydrates, the gums are water-soluble, non-starch polysaccharides with high commercial value. Polysaccharide gums are widely used for controlled-release products, capsules, medicinal binders, wound healing agents, capsules, and tablet excipients. One of the essential applications of polysaccharide gum is drug delivery systems. The various kinds of polysaccharide gums obtained from different plants, marine algae, and microorganisms for the drug delivery system application are discussed comprehensively in this review paper.
Collapse
Affiliation(s)
- Jindrayani Nyoo Putro
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Felycia Edi Soetaredjo
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Valentino Bervia Lunardi
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
| | - Wenny Irawaty
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Maria Yuliana
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Natania Puspitasari
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - I Gede Wenten
- Department of Chemical Engineering, Institute of Technology Bandung (ITB), Jl. Ganesha 10, Bandung 40132, Indonesia
| | - Suryadi Ismadji
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia.
| |
Collapse
|
11
|
Basharat Z, Afzaal M, Saeed F, Islam F, Hussain M, Ikram A, Pervaiz MU, Awuchi CG. Nutritional and functional profile of carob bean ( Ceratonia siliqua): a comprehensive review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2022.2164590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zunaira Basharat
- Department of Food Science, University of the Punjab Lahore, Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Fakhar Islam
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Ali Ikram
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | | | - Chinaza Godswill Awuchi
- School of Natural and Applied Sciences, Kampala International University, Kansanga, Kampala, Uganda
| |
Collapse
|
12
|
Calton A, Lille M, Sozer N. 3-D printed meat alternatives based on pea and single cell proteins and hydrocolloids: Effect of paste formulation on process-induced fibre alignment and structural and textural properties. Food Res Int 2023; 174:113633. [PMID: 37981359 DOI: 10.1016/j.foodres.2023.113633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023]
Abstract
Extrusion-based 3D food printing can be used as an alternative structuring technique to traditional extrusion processing for creating meat-like structures. This study focused on 3-D food printing to generate structures analogous to meat by using various combinations of texturized pea protein fibrils, microbial Single Cell Protein (SCP) and hydrocolloids locust bean gum and/or sodium alginate. Simple moulding was utilized as benchmarking to better understand the 3D printing-induced structural effects. To gain understanding of the interactions between proteins of different origin (plant and SCP) and with hydrocolloids, structural, textural and rheological properties were analysed. Oscillatory stress sweeps of all printing pastes revealed elastic-dominant rheological behaviour (G' 4000-6000 Pa) with a defined yield stress (25-60 Pa) explaining their printability and shape stability. X-ray microtomography of ion-crosslinked analogues showed a printing-induced preferential alignment of fibrils in the direction of nozzle movement, while moulding led to a random orientation. Textural characterization via bi-directional cutting tests demonstrated higher cutting force in transversal (FT) over longitudinal (FL) direction in 3D-printed samples and equal forces in moulded samples. The anisotropy index (AI = FT/FL) of printed samples ranged between 1.4 and 2.5, indicating anisotropic texture, and 0.8-1 for moulded samples indicating isotropic texture. This study demonstrated the applicability of paste-extrusion in generating anisotropic structures analogous to meat by process-induced fibril alignment. The results support further development of 3D food printing technology in design of sustainable meat alternatives resembling whole-muscle meat.
Collapse
Affiliation(s)
- Alex Calton
- VTT Technical Research Centre of Finland, Ltd., P.O. Box 1000, FI-02044 VTT, Finland.
| | - Martina Lille
- VTT Technical Research Centre of Finland, Ltd., P.O. Box 1000, FI-02044 VTT, Finland
| | - Nesli Sozer
- VTT Technical Research Centre of Finland, Ltd., P.O. Box 1000, FI-02044 VTT, Finland
| |
Collapse
|
13
|
Wang X, Li X, Zhang L, An L, Guo L, Huang L, Gao W. Recent progress in plant-derived polysaccharides with prebiotic potential for intestinal health by targeting gut microbiota: a review. Crit Rev Food Sci Nutr 2023:1-30. [PMID: 37651130 DOI: 10.1080/10408398.2023.2248631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Natural products of plant origin are of high interest and widely used, especially in the food industry, due to their low toxicity and wide range of bioactive properties. Compared to other plant components, the safety of polysaccharides has been generally recognized. As dietary fibers, plant-derived polysaccharides are mostly degraded in the intestine by polysaccharide-degrading enzymes secreted by gut microbiota, and have potential prebiotic activity in both non-disease and disease states, which should not be overlooked, especially in terms of their involvement in the treatment of intestinal diseases and the promotion of intestinal health. This review elucidates the regulatory effects of plant-derived polysaccharides on gut microbiota and summarizes the mechanisms involved in targeting gut microbiota for the treatment of intestinal diseases. Further, the structure-activity relationships between different structural types of plant-derived polysaccharides and the occurrence of their prebiotic activity are further explored. Finally, the practical applications of plant-derived polysaccharides in food production and food packaging are summarized and discussed, providing important references for expanding the application of plant-derived polysaccharides in the food industry or developing functional dietary supplements.
Collapse
Affiliation(s)
- Xiaozhen Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Luyao Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lingzhuo An
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
14
|
Qu Y, He S, Luo S, Zhao J, Liang R, Liao C, Zheng L. Photocrosslinkable, Injectable Locust Bean Gum Hydrogel Induces Chondrogenic Differentiation of Stem Cells for Cartilage Regeneration. Adv Healthc Mater 2023; 12:e2203079. [PMID: 36881328 DOI: 10.1002/adhm.202203079] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/22/2023] [Indexed: 03/08/2023]
Abstract
Due to the limited therapeutic efficacy of current treatments, articular cartilage regeneration is still challenging work. Scaffold-based tissue engineering provides a promising strategy for cartilage regeneration, but most scaffolds are limited by poor mechanical properties or unfavorable biocompatibility. Here, a novel photocrosslinkable, injectable locust bean gum (LBG)-methacrylate (MA) hydrogel is reported as a biomimetic extracellular matrix (ECM) for cartilage repair with minimal invasive operation. LBG-MA hydrogels show controllable degradation rate and improve mechanical properties and excellent biocompatibility. More importantly, LBG-MA hydrogel significantly induces bone mesenchymal stem cells to chondrogenic differentiation in vitro, as evidenced by high accumulation of cartilage-specific ECM components glycosaminoglycan and upregulated expression of key chondrogenic genes (collagen type II, aggrecan, and sex determining region Y-box9). Besides, the hydrogel is injectable, which can be in situ crosslinked via UV irradiation. Further, the photocrosslinkable hydrogels accelerate cartilage healing in vivo after 8 weeks of therapy. A strategy is provided here for photocrosslinkable, injectable, biodegradable scaffold fabrication based on native polysaccharide polymer for minimal invasive cartilage repair.
Collapse
Affiliation(s)
- Yangyang Qu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
| | - Si He
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
| | - Shixing Luo
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Orthopedics, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, 536000, P. R. China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
| | - Ruiming Liang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
| | - Chuanan Liao
- Pharmaceutical college, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
| |
Collapse
|
15
|
Caillol S. A Blooming Season for Natural Polymers and Biopolymers. Molecules 2023; 28:molecules28073207. [PMID: 37049970 PMCID: PMC10096337 DOI: 10.3390/molecules28073207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
The year 2023 is particularly remarkable because we are celebrating the 25th anniversary of the 12 principles of Green Chemistry described in the groundbreaking book Green Chemistry: Theory and Practice co-authored by Paul Anastas and John C [...].
Collapse
Affiliation(s)
- Sylvain Caillol
- ICGM, University of Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| |
Collapse
|