1
|
Morán-Serradilla C, Plano D, Sanmartín C, Sharma AK. Selenization of Small Molecule Drugs: A New Player on the Board. J Med Chem 2024; 67:7759-7787. [PMID: 38716896 DOI: 10.1021/acs.jmedchem.3c02426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
There is an urgent need to develop safer and more effective modalities for the treatment of a wide range of pathologies due to the increasing rates of drug resistance, undesired side effects, poor clinical outcomes, etc. Throughout the years, selenium (Se) has attracted a great deal of attention due to its important role in human health. Besides, a growing body of work has unveiled that the inclusion of Se motifs into a great number of molecules is a promising strategy for obtaining novel therapeutic agents. In the current Perspective, we have gathered the most recent literature related to the incorporation of different Se moieties into the scaffolds of a wide range of known drugs and their feasible pharmaceutical applications. In addition, we highlight different representative examples as well as provide our perspective on Se drugs and the possible future directions, promises, opportunities, and challenges of this ground-breaking area of research.
Collapse
Affiliation(s)
| | - Daniel Plano
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
- Penn State Cancer Institute, 400 University Drive,Hershey, Pennsylvania 17033, United States
| |
Collapse
|
2
|
Sári D, Ferroudj A, Semsey D, El-Ramady H, Brevik EC, Prokisch J. Tellurium and Nano-Tellurium: Medicine or Poison? NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:670. [PMID: 38668165 PMCID: PMC11053935 DOI: 10.3390/nano14080670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Tellurium (Te) is the heaviest stable chalcogen and is a rare element in Earth's crust (one to five ppb). It was discovered in gold ore from mines in Kleinschlatten near the present-day city of Zlatna, Romania. Industrial and other applications of Te focus on its inorganic forms. Tellurium can be toxic to animals and humans at low doses. Chronic tellurium poisoning endangers the kidney, liver, and nervous system. However, Te can be effective against bacteria and is able to destroy cancer cells. Tellurium can also be used to develop redox modulators and enzyme inhibitors. Soluble salts that contain Te had a role as therapeutic and antimicrobial agents before the advent of antibiotics. The pharmaceutical use of Te is not widespread due to the narrow margin between beneficial and toxic doses, but there are differences between the measure of toxicity based on the Te form. Nano-tellurium (Te-NPs) has several applications: it can act as an adsorptive agent to remove pollutants, and it can be used in antibacterial coating, photo-catalysis for the degradation of dyes, and conductive electronic materials. Nano-sized Te particles are the most promising and can be produced in both chemical and biological ways. Safety assessments are essential to determine the potential risks and benefits of using Te compounds in various applications. Future challenges and directions in developing nano-materials, nano-alloys, and nano-structures based on Te are still open to debate.
Collapse
Affiliation(s)
- Daniella Sári
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
| | - Aya Ferroudj
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
| | - Dávid Semsey
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
| | - Hassan El-Ramady
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Eric C. Brevik
- College of Agricultural, Life, and Physical Sciences, Southern Illinois University, Carbondale, IL 62901, USA;
| | - József Prokisch
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
| |
Collapse
|
3
|
Chang XP, Wang JL, Peng LY, Cen XJ, Yin BW, Xie BB. Mechanistic photophysics of tellurium-substituted cytosine: Electronic structure calculations and nonadiabatic dynamics simulations. Photochem Photobiol 2024; 100:339-354. [PMID: 37435854 DOI: 10.1111/php.13835] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Previously, the MS-CASPT2 method was performed to study the static and qualitative photophysics of tellurium-substituted cytosine (TeC). To get quantitative information, we used our recently developed QTMF-FSSH dynamics method to simulate the excited-state decay of TeC. The CASSCF method was adopted to reduce the calculation costs, which was confirmed to provide reliable structures and energies as those of MS-CASPT2. A detailed structural analysis showed that only 5% trajectories will hop to the lower triplet or singlet state via the twisted (S2 /S1 /T2 )T intersection, while 67% trajectories will choose the planar intersections of (S2 /S1 /T3 /T2 /T1 )P and (S2 /S1 /T2 /T1 )P but subsequently become twisted in other electronic states. By contrast, ~28% trajectories will maintain in a plane throughout dynamics. Electronic population revealed that the S2 population will ultrafast transfer to the lower triplet or singlet state. Later, the TeC system will populate in the spin-mixed electronic states composed of S1 , T1 and T2 . At the end of 300 fs, most trajectories (~74%) will decay to the ground state and only 17.4% will survive in the triplet states. Our dynamics simulation verified that tellurium substitution will enhance the intersystem crossings, but the very short triplet lifetime (ca. 125 fs) will make TeC a less effective photosensitizer.
Collapse
Affiliation(s)
- Xue-Ping Chang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, China
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, China
| | - Jie-Lei Wang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, China
| | - Ling-Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Xu-Jiang Cen
- Ningbo Zhongtian Engineering Co., Ltd., Ningbo, China
| | - Bo-Wen Yin
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, China
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, China
| |
Collapse
|