1
|
Qiu CL, Li W, Wang LN, Wang SC, Falert S, Wang C, Yu SY, Abdelkhalek ST, Lu J, Lin YJ, Wang MQ. Limonene enhances rice plant resistance to a piercing-sucking herbivore and rice pathogens. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39340817 DOI: 10.1111/pbi.14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Terpene synthases (TPSs) are key enzymes in terpenoids synthesis of plants and play crucial roles in regulating plant defence against pests and diseases. Here, we report the functional characterization of OsTPS19 and OsTPS20, which were upregulated by the attack of brown planthopper (BPH). BPH female adults performed concentration-dependent behavioural responses to (S)-limonene showing preference behaviour at low concentrations and avoidance behaviour at high concentrations. Overexpression lines of OsTPS19 and OsTPS20, which emitted higher amounts of the monoterpene (S)-limonene, decreased the hatching rate of BPH eggs, reduced the lesion length of sheath blight caused by Rhizoctonia solani and bacterial blight caused by Xanthomonas oryzae. While knockout lines of OsTPS19 and OsTPS20, which emitted lower amounts of (S)-limonene, were more susceptible to these pathogens. Overexpression of OsTPS19 and OsTPS20 in rice plants had adverse effects on the incidence of BPH, rice blast, and sheath blight in the field and had no significant impacts on rice yield traits. OsTPS19 and OsTPS20 were found to be involved in fine-tuning the emission of (S)-limonene in rice plants and play an important role in defence against both BPH and rice pathogens.
Collapse
Affiliation(s)
- Chang-Lai Qiu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Ling-Nan Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Shi-Cheng Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Supaporn Falert
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chao Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shi-Yu Yu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sara Taha Abdelkhalek
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Jing Lu
- Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yong-Jun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Man-Qun Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Contreras-Martínez OI, Angulo-Ortíz A, Santafé-Patiño G, Aviña-Padilla K, Velasco-Pareja MC, Yasnot MF. Transcriptional Reprogramming of Candida tropicalis in Response to Isoespintanol Treatment. J Fungi (Basel) 2023; 9:1199. [PMID: 38132799 PMCID: PMC10744401 DOI: 10.3390/jof9121199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Candida tropicalis, an opportunistic pathogen, ranks among the primary culprits of invasive candidiasis, a condition notorious for its resistance to conventional antifungal drugs. The urgency to combat these drug-resistant infections has spurred the quest for novel therapeutic compounds, with a particular focus on those of natural origin. In this study, we set out to evaluate the impact of isoespintanol (ISO), a monoterpene derived from Oxandra xylopioides, on the transcriptome of C. tropicalis. Leveraging transcriptomics, our research aimed to unravel the intricate transcriptional changes induced by ISO within this pathogen. Our differential gene expression analysis unveiled 186 differentially expressed genes (DEGs) in response to ISO, with a striking 85% of these genes experiencing upregulation. These findings shed light on the multifaceted nature of ISO's influence on C. tropicalis, spanning a spectrum of physiological, structural, and metabolic adaptations. The upregulated DEGs predominantly pertained to crucial processes, including ergosterol biosynthesis, protein folding, response to DNA damage, cell wall integrity, mitochondrial activity modulation, and cellular responses to organic compounds. Simultaneously, 27 genes were observed to be repressed, affecting functions such as cytoplasmic translation, DNA damage checkpoints, membrane proteins, and metabolic pathways like trans-methylation, trans-sulfuration, and trans-propylamine. These results underscore the complexity of ISO's antifungal mechanism, suggesting that it targets multiple vital pathways within C. tropicalis. Such complexity potentially reduces the likelihood of the pathogen developing rapid resistance to ISO, making it an attractive candidate for further exploration as a therapeutic agent. In conclusion, our study provides a comprehensive overview of the transcriptional responses of C. tropicalis to ISO exposure. The identified molecular targets and pathways offer promising avenues for future research and the development of innovative antifungal therapies to combat infections caused by this pathogenic yeast.
Collapse
Affiliation(s)
| | - Alberto Angulo-Ortíz
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia; (A.A.-O.); (G.S.-P.)
| | - Gilmar Santafé-Patiño
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia; (A.A.-O.); (G.S.-P.)
| | - Katia Aviña-Padilla
- Center for Research and Advanced Studies of the I.P.N. Unit Irapuato, Irapuato 36821, Mexico;
| | - María Camila Velasco-Pareja
- Bacteriology Department, Faculty of Health Sciences, University of Córdoba, Montería 230002, Colombia; (M.C.V.-P.); (M.F.Y.)
| | - María Fernanda Yasnot
- Bacteriology Department, Faculty of Health Sciences, University of Córdoba, Montería 230002, Colombia; (M.C.V.-P.); (M.F.Y.)
| |
Collapse
|
3
|
Tadić V, Božović M, Sapienza F, Astolfi R, Mladenović M, Zaka MC, Del Bove F, Borzacchi F, Fraschetti C, Rossi C, Vertuani S, Baldisserotto A, Manfredini S, Ragno R. Chemical Composition and Anti- Candida Activity of Mentha suaveolens Ehrh. Essential Oils Obtained by Different Distillation Processes. Molecules 2023; 28:6934. [PMID: 37836777 PMCID: PMC10574099 DOI: 10.3390/molecules28196934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
A comparative study on essential oils extracted from Mentha suaveolens Ehrh. from Italy is reported. Two extraction procedures were investigated: hydrodistillation and steam distillation, carried out as a continuous and fractionated procedure. Fresh and dried plant material from two harvests was used. The hydrodistillation method yielded a higher amount of essential oil. The dried plant was significantly richer in essential oil per kg of starting plant material. Gas chromatography-mass spectrometry analysis of 112 samples showed that the essential oils belong to the piperitenone oxide-rich chemotype. In addition, piperitenone, p-cymen-8-ol, and limonene were among the most abundant compounds in the different samples. A higher amount of piperitenone oxide was obtained by hydrodistillation, while steam distillation gave a higher percentage of piperitenone and limonene. The essential oils were characterized for their anti-Candida albicans activity; higher potency was observed for the samples rich in piperitenone oxide, with MIC values ranging from 0.39 to 0.78 mg·mL-1 (0.039% and 0.078% p/v). The results of this work provide a deep insight into the methodology of essential oil extraction and the associated chemical variability of M. suaveolens Ehrh. Some of the essential oils are potent against C. albicans and could be considered for potential use in therapy.
Collapse
Affiliation(s)
- Vanja Tadić
- Institute of Medicinal Plants Research Dr. Josif Pančić, Tadeuša Koščuška 1, 11000 Belgrade, Serbia;
| | - Mijat Božović
- Faculty of Natural Science and Mathematics, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica, Montenegro;
| | - Filippo Sapienza
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.S.); (R.A.)
| | - Roberta Astolfi
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.S.); (R.A.)
| | - Milan Mladenović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia;
| | - Maria Cristina Zaka
- Department of Drug Chemistry and Technology, Bachelor Course in Applied Pharmaceutical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.C.Z.); (F.D.B.)
| | - Fabiana Del Bove
- Department of Drug Chemistry and Technology, Bachelor Course in Applied Pharmaceutical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.C.Z.); (F.D.B.)
| | | | - Caterina Fraschetti
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Caterina Rossi
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (C.R.); (S.V.); (A.B.)
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (C.R.); (S.V.); (A.B.)
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (C.R.); (S.V.); (A.B.)
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (C.R.); (S.V.); (A.B.)
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.S.); (R.A.)
| |
Collapse
|
4
|
Alves-Silva JM, Gonçalves MJ, Silva A, Cavaleiro C, Cruz MT, Salgueiro L. Chemical Profile, Anti-Microbial and Anti-Inflammaging Activities of Santolina rosmarinifolia L. Essential Oil from Portugal. Antibiotics (Basel) 2023; 12:antibiotics12010179. [PMID: 36671380 PMCID: PMC9854695 DOI: 10.3390/antibiotics12010179] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Fungal infections and the accompanying inflammatory responses are associated with great morbidity and mortality due to the frequent relapses triggered by an increased resistance to antifungal agents. Furthermore, this inflammatory state can be exacerbated during inflammaging and cellular senescence. Essential oils (EO) are receiving increasing interest in the field of drug discovery due to their lipophilic nature and complex composition, making them suitable candidates in the development of new antifungal drugs and modulators of numerous molecular targets. This work chemically characterized the EO from Santolina rosmarinifolia L., collected in Setúbal (Portugal), and assessed its antifungal potential by determining its minimum inhibitory (MIC) and minimum lethal (MLC) concentration in accordance with the Clinical Laboratory Standard Guidelines (CLSI) guidelines, as well as its effect on several Candida albicans virulence factors. The anti-inflammatory effect was unveiled using lipopolysaccharide (LPS)-stimulated macrophages by assessing several pro-inflammatory mediators. The wound healing and anti-senescence potential of the EO was also disclosed. The EO was mainly characterized by β-pinene (29.6%), borneol (16.9%), myrcene (15.4%) and limonene (5.7%). It showed a strong antifungal effect against yeasts and filamentous fungi (MIC = 0.07-0.29 mg/mL). Furthermore, it inhibited dimorphic transition (MIC/16), decreased biofilm formation with a preeminent effect after 24 h (MIC/2) and disrupted preformed biofilms in C. albicans. Additionally, the EO decreased nitric oxide (NO) release (IC50 = 0.52 mg/mL) and pro-IL-1β and inducible nitric oxide synthase (iNOS) expression in LPS-stimulated macrophages, promoted wound healing (91% vs. 81% closed wound) and reduced cellular senescence (53% vs. 73% β-galactosidase-positive cells). Overall, this study highlights the relevant pharmacological properties of S. rosmarinifolia, opening new avenues for its industrial exploitation.
Collapse
Affiliation(s)
- Jorge M. Alves-Silva
- Institute for Clinical and Biomedical Research, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
| | - Maria José Gonçalves
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Ana Silva
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Carlos Cavaleiro
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
- Correspondence:
| |
Collapse
|