1
|
Li Z, Tang Z, Cao J, Yao X, Chen J, Xu K, Sun R, Shao X, Lv M, Wang L. Cyano-modified molecular cage silica gel stationary phase: Multi-functional chromatographic performance by high-performance liquid chromatography. J Chromatogr A 2024; 1737:465441. [PMID: 39427509 DOI: 10.1016/j.chroma.2024.465441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/28/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
This study successfully prepared different loading levels of cyano-functionalized RCC3 molecular cage silica gel stationary phase (RCC3-CN@SiO2) through aldehyde-amine condensation reaction and subsequent modification strategies. Fourier transform infrared spectroscopy, thermogravimetric analysis, nitrogen adsorption-desorption, and scanning electron microscopy confirmed the successful synthesis of RCC3-CN@SiO2 chromatographic stationary phase. The research demonstrates that due to hydrophobic/hydrophilic interactions, π-π interactions, hydrogen bonding, and size-selective porous structure, the stationary phase effectively separates moderately polar and weakly polar compounds in reversed-phase liquid chromatography (RPLC) mode, exhibiting hydrophobic selectivity comparable to the commercial DaisoC18-RP columns. Additionally, the tertiary amine and cyanogen groups on the molecular cage surface enhance the interaction with polar compounds, successfully separating nucleosides, sulfonamides, amino acids, and sugars in hydrophilic interaction chromatography (HILIC) mode. Further applications in the separation analysis of acidic drugs, alkaline drugs, cinnamic acid natural products, and chiral compounds demonstrate the multifunctional chromatographic capabilities for diverse compound types. Compared to Unitary Diol commercial columns, the prepared stationary phase showed significant advantages in wide polarity range separation performance. Moreover, through nucleoside compound separation mode switching analysis, RCC3-CN@SiO2 stationary phase further validates its favorable performance in both RPLC and HILIC modes, demonstrating extensive potential applications in the field of analytical chemistry. Importantly, the stationary phase exhibits efficient separation of nucleoside compounds in pure water systems, aligning with the principles of green analysis.
Collapse
Affiliation(s)
- Zhen Li
- School of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China; School of Pharmacy, Jining Medical University, Jining 272000, PR China
| | - Zixia Tang
- School of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China; School of Pharmacy, Jining Medical University, Jining 272000, PR China
| | - Junxiang Cao
- School of Pharmacy, Jining Medical University, Jining 272000, PR China
| | - Xingyu Yao
- School of Pharmacy, Jining Medical University, Jining 272000, PR China
| | - Jia Chen
- School of Pharmacy, Jining Medical University, Jining 272000, PR China
| | - Kang Xu
- School of Pharmacy, Jining Medical University, Jining 272000, PR China
| | - Ruixue Sun
- School of Pharmacy, Jining Medical University, Jining 272000, PR China
| | - Xiaoyi Shao
- School of Pharmacy, Jining Medical University, Jining 272000, PR China
| | - Mei Lv
- School of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China; School of Pharmacy, Jining Medical University, Jining 272000, PR China.
| | - Litao Wang
- School of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China; School of Pharmacy, Jining Medical University, Jining 272000, PR China.
| |
Collapse
|
2
|
Wu Y, Li Y, Li S, Ma Y, Ji W, Sun Y. The series of L-lysine-derived gelators-modified multifunctional chromatography stationary phase for separation of chiral and achiral compounds. J Chromatogr A 2024; 1733:465228. [PMID: 39163701 DOI: 10.1016/j.chroma.2024.465228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024]
Abstract
In this study, using chiral L-lysine as the molecular skeleton, three kinds of L-lysine-derived gelators (GBLB, GBLF and GFLF) were synthesized and then bonded to the surface of silica matrix (5 μm) by amide condensation to prepare a series of multifunctional chromatography stationary phases (GBLB-SiO2, GBLF-SiO2, and GFLF-SiO2) were prepared. The L-lysine-derived gelators not only possess chiral recognition ability, but also can spontaneously form oriented and ordered network structures in liquid medium through the interaction of non-covalent bonding forces such as hydrogen bonding, π-π stacking, and van der Waals forces. The comprehensive effect of multiple weak interaction sites enhances the molecular recognition ability and further improves the separation diversity of different types of compounds on stationary phases. The separation and evaluation of chiral compounds showed that benzoin, 1-phenyl-ethanol, 1-phenyl-propanol and 6-hydroxyflavanone could be separated in normal phase mode (NPLC). The separation of different types of non-chiral compounds, such as sulfonamides, nucleosides, nucleobases, polycyclic aromatic hydrocarbons (PAHs), anilines, and aromatic acids, were achieved in hydrophilic interaction/reversed-phase/ion-exchange mode (HILIC/RPLC/IEC), and the separation of polarized compounds could be performed under the condition of ultrapure water as the mobile phase, which has the typical retention characteristics of per aqueous liquid chromatography (PALC). The effects of organic solvent content, temperature, pH value, and buffer salt concentration on the retention and separation performance of the column were investigated. Comparison of the three prepared columns showed that the separation performance (such as aromatic selectivity) could be improved by increasing the types of functional groups on the surface of the stationary phase and the number of aromatic groups. In a word, the prepared stationary phase have multiple retention properties, can simultaneously separate chiral compounds and various types of achiral compounds. This work provides an idea for developing multifunctional liquid chromatography stationary phase materials, and further expands the application of gelators in separation science.
Collapse
Affiliation(s)
- Yongli Wu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yuanyuan Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Shaorong Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yulong Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Wenxin Ji
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yonggang Sun
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
3
|
Wang L, Li Z, Wang Y, Li N, Hu D, Wu W, Hu JX, Pei D, Lv M. A singular chromatographic column breakthrough: Achieving full polarity range separations with the epoxy propanol molecular cage bonded silica stationary phase. J Chromatogr A 2024; 1730:465098. [PMID: 38901295 DOI: 10.1016/j.chroma.2024.465098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
The epoxy propanol molecular cage bonded silica stationary phase, RCC3-GLD@silica, synthesized through the ring-opening reaction of secondary amine with epoxy propanol using RCC3-R as the scaffold unit, was successfully prepared as confirmed by infrared spectroscopy, thermogravimetric analysis, and nitrogen adsorption-desorption characterization. This stationary phase demonstrated excellent separation performance in both reversed-phase and hydrophilic chromatography modes, effectively separating a wide variety of compounds including alkylbenzenes, polycyclic aromatic hydrocarbons, phenols, anilines, sulfonamides, nucleosides, amino acids, sugars, and acids. The development of RCC3-GLD@silica benefits from the synergistic effects of its hydrophobic and hydrophilic actions, as evidenced by the U-shaped characteristic of the retention factor for nucleoside compounds with changes in the aqueous content of the mobile phase, further confirming the simultaneous presence of reversed-phase and hydrophilic chromatography mechanisms. Not only did this stationary phase successfully separate 33 compounds in reversed-phase chromatography mode, but it also separated 54 compounds in hydrophilic interaction chromatography mode, showcasing its broad separation capability from weakly polar to strongly polar compounds on a single chromatographic column. This indicates a wide application prospect in the field of chromatographic analysis.
Collapse
Affiliation(s)
- Litao Wang
- School of Pharmacy, Jining Medical University, Jining 272000, PR China
| | - Zhen Li
- School of Pharmacy, Jining Medical University, Jining 272000, PR China; School of Pharmacy, Shandong First Medical University, Taian 271000, PR China
| | - Ying Wang
- School of Pharmacy, Jining Medical University, Jining 272000, PR China
| | - Niannian Li
- School of Pharmacy, Jining Medical University, Jining 272000, PR China
| | - Dekuan Hu
- School of Pharmacy, Jining Medical University, Jining 272000, PR China
| | - Wei Wu
- School of Pharmacy, Jining Medical University, Jining 272000, PR China
| | - Jin Xia Hu
- Qingdao Center of Resource Chemistry & New Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Qingdao 266000, PR China
| | - Dong Pei
- Qingdao Center of Resource Chemistry & New Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Qingdao 266000, PR China.
| | - Mei Lv
- School of Pharmacy, Jining Medical University, Jining 272000, PR China.
| |
Collapse
|
4
|
Hu H, Xia L, Li G, Chen Y. Recent progress of porous cage materials in sample preparation, chromatographic separation, and detection. J Sep Sci 2024; 47:e2400415. [PMID: 39118576 DOI: 10.1002/jssc.202400415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Porous cage materials with certain dimensions, sizes, shapes, and functions have been regarded as promising materials for sample preparation, chromatographic separation, and detection process. In contrast to infinite frameworks such as metal-organic frameworks or covalent organic frameworks, porous cage materials are constructed from discrete molecules containing at least one internal cavity. The well-defined cavities in porous cage materials provide opportunities for non-covalent interactions. These interactions can be programmed into the ligand design or supramolecular cage constructing using the cages as building blocks, offering various host-guest recognition with great selectivity. In this review, we desire to elucidate the fundamental principles governing the design and fabrication of porous cage materials with well-defined cavities, good solvent processability, and modifiable groups, the applications of these porous cage materials in sample preparation, chromatographic separation, and detection were discussed. The recent advantages of porous cage materials for the analysis process were summarized. We state the potential of these materials and provide an outlook for further application strategies. We expect that this review can inspire interest in the porous cage materials research area for analysis.
Collapse
Affiliation(s)
- Hongzhi Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yi Chen
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, China
| |
Collapse
|
5
|
Zhang T, Sun Y, Feng X, Li J, Zhao W, Xiang G, He L, Zhang S. Construction of MOFs@COFs composite material as stationary phase for efficient separation of diverse organic compounds. Anal Chim Acta 2024; 1288:342160. [PMID: 38220292 DOI: 10.1016/j.aca.2023.342160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND The development of efficent chromatographic stationary phases (SP) with mixed-mode or multiple interactions in high-performance liquid chromatography (HPLC) for the separation of complex samples is a challenging task. Metal organic frameworks (MOFs)-based SP can provide desired multiple interactions and enable the separation of a diverse range of solutes, but have limitations of low column efficiency and poor stability. RESULTS Herein, the hybrid MOFs@Covalent organic frameworks (COFs) materials were used as SP in HPLC due to their synergistic structural features. The SiO2@NH2-UiO-66@CTF SP was synthesized by integration of NH2-UiO-66 and covalent triazine framework (CTF) onto silica surface. Due to the unique structure of SiO2@NH2-UiO-66@CTF with hierarchical-pores, this column showed higher column efficiency (up to 49,369 plates m-1 for alkylbenzenes) than the reported columns packed with MOFs-based SP. Owing to the Zr4+-N coordination bonding between CTF and NH2-UiO-66, the structural stability of SiO2@NH2-UiO-66@CTF can be improved. Furthermore, this new column exhibited remarkable column stability with relative standard deviation of retention time of <0.40% after 400 injections. With the combined advantages of multifunctional properties, high column efficiency, and good stability, SiO2@NH2-UiO-66@CTF SP showed excellent selectivity for the separation of a variety of hydrophobic, aromatic, heteroatomic, and hydrophilic analytes. SIGNIFICANCE AND NOVELTY This work not only offers a promising SP with multiple retention mechanisms for HPLC, but also provides an efficient strategy for development of high column efficiency MOFs-based SP with good stability. Moreover, the MOFs@COFs hybrid materials were expanded in application area through this study, and the research results can also afford the foundation for further explore its structural characteristics.
Collapse
Affiliation(s)
- Tao Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Yaming Sun
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, 450001, PR China.
| | - Xiaxing Feng
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Jingna Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Wenjie Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, 450001, PR China
| | - Guoqiang Xiang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, 450001, PR China
| | - Lijun He
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, 450001, PR China.
| | - Shusheng Zhang
- Center for Modern Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, 450001, PR China
| |
Collapse
|