1
|
Wang W, Zhang J, Li C. Randomized controlled trial of bushen yinao pill combined with conventional therapy on intestinal flora imbalance and cognitive function improvement in older patients with Alzheimer's disease. Int J Psychiatry Med 2024:912174241290962. [PMID: 39665445 DOI: 10.1177/00912174241290962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
OBJECTIVE This study aimed to evaluate the effects of the Bushen Yinao Pill, combined with standard therapy, on gut flora imbalances, inflammatory markers, and cognitive function in older patients with Alzheimer's disease (AD). METHODS A total of 136 AD patients treated at the Department of Neurology from August 2022 to September 2023 were randomly assigned to two groups: 68 patients received standard treatment (control group, CTG), and 68 patients received the Bushen Yinao Pill plus standard treatment (intervention group, ITG). Outcomes included TCM syndrome scores, gut microbiota composition, inflammatory markers, cognitive function, overall efficacy, and safety. RESULTS ITG showed significant reductions in syndrome scores as compared to CTG after treatment (P < 0.05). The ITG also showed significant increases in beneficial bacteria and decreases in harmful bacteria compared to the CTG (P < 0.05). Inflammatory markers (Aβ, IL-6, TNF-α) were reduced, and cognitive function improved more significantly in the ITG (P < 0.05). The effective rate was higher in the ITG, with no significant difference in adverse reactions between the groups (P > 0.05). CONCLUSION The Bushen Yinao Pill, when combined with standard therapy, effectively regulates gut microbiota, reduces inflammatory markers, and enhances cognitive function in AD patients, showing a favorable safety profile. Further research is recommended to validate these findings in diverse populations.
Collapse
Affiliation(s)
- Wei Wang
- Harbin Traditional Chinese Medicine Hospital, Harbin City, China
| | - Ji Zhang
- Harbin Traditional Chinese Medicine Hospital, Harbin City, China
| | - Cangda Li
- Harbin Traditional Chinese Medicine Hospital, Harbin City, China
| |
Collapse
|
2
|
Liang X, Jiang S, Su P, Yin C, Jiang W, Gao J, Liu Z, Li Y, Wang W, Qian A, Tian Y. Angelicae dahuricae radix alleviates simulated microgravity induced bone loss by promoting osteoblast differentiation. NPJ Microgravity 2024; 10:91. [PMID: 39353918 PMCID: PMC11445575 DOI: 10.1038/s41526-024-00433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/22/2024] [Indexed: 10/03/2024] Open
Abstract
Bone loss caused by long-duration spaceflight seriously affects the skeletal health of astronauts. There are many shortcomings in currently available treatments for weightlessness-induced bone loss. The aim of this study was to evaluate the preventive effect of Angelica dahuricae Radix (AR) on simulated microgravity-induced bone loss. Here, we established a hind limb unloading (HLU) mouse model and treated HLU mice with AR (2 g/kg) for 4 weeks. Results indicated that AR significantly inhibited simulated microgravity-induced bone loss. In addition, the components in AR were analyzed using UPLC-MS/MS; results showed that a total of 224 compounds were detected in AR, which mainly contained 7 classes of components. Moreover, the network pharmacological predictions suggested that active ingredients of AR might act on PTGS2 to prevent bone loss. These results elucidate the efficacy of AR in preventing microgravity-induced bone loss and its potential for use in protecting the bone health of astronauts.
Collapse
Affiliation(s)
- Xuechao Liang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, Xi'an Key Laboratory of Special Medicine and Health Engineering, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Shanfeng Jiang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, Xi'an Key Laboratory of Special Medicine and Health Engineering, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Peihong Su
- Shaanxi Provincial Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Chong Yin
- Department of Clinical Laboratory, Academician (expert) workstation, Lab of epigenetics and RNA therapy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P. R. China
| | - Wei Jiang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, China
| | - Junhong Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Zhiyong Liu
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Yuhang Li
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, Xi'an Key Laboratory of Special Medicine and Health Engineering, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Weisi Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, P. R. China
| | - Airong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, Xi'an Key Laboratory of Special Medicine and Health Engineering, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Ye Tian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, Xi'an Key Laboratory of Special Medicine and Health Engineering, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
3
|
Muralikrishnan A, Sekar M, Kumarasamy V, Gan SH, Ravi S, Subramaniyan V, Wong LS, Wu YS, Khattulanuar FS, Mat Rani NNI. Chemistry, Pharmacology and Therapeutic Potential of Decursin: A Promising Natural Lead for New Drug Discovery and Development. Drug Des Devel Ther 2024; 18:3741-3763. [PMID: 39286287 PMCID: PMC11403470 DOI: 10.2147/dddt.s476279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/10/2024] [Indexed: 09/19/2024] Open
Abstract
Decursin is a pyranocoumarin compounds which are rare secondary metabolic plant products, isolated from the roots of Angelica gigas (A. gigas). The native Korean species Angelica gigas Nakai (AGN) is widely used as a remedy for a variety of medical conditions including hematopoiesis, improving women's circulation, as sedatives, analgesics and tonic. It is unique because of the presence of substantial amounts of pyranocoumarins including decursin, decursinol, and decursinol angelate. In this review, we provide a comprehensive insight into the distribution, morphology, and chemical composition of A. gigas. A detailed discussion regarding the biological applications of decursin based on the literature retrieved from PubMed, ScienceDirect, Scopus, and Google Scholar from 2000 to the present has been discussed. Both in vitro and in vivo studies have demonstrated that decursin has potential neuroprotective, anti-inflammatory, anti-melanogenic, anti-angiogenic, antioxidant, and anti-visceral properties. Mechanistic findings establish its significance in regulating important signalling pathways, triggering apoptosis, and preventing metastasis in different cancer types. The review additionally addressed the isolation methods, biosynthesis, physiochemical characteristics, toxicity and pharmacokinetic profile of decursin. The present state of clinical studies including A. gigas is investigated, emphasizing its advancements and possibilities in the field of translational medicine.
Collapse
Affiliation(s)
- Amrita Muralikrishnan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology & Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Subban Ravi
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor 47500, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Yuan Seng Wu
- Sunway Microbiome Centre & Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, 47500, Malaysia
| | - Farrah Syazana Khattulanuar
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, 30450, Malaysia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, 30450, Malaysia
| |
Collapse
|
4
|
Chociej P, Foss K, Jabłońska M, Ustarbowska M, Sawicki T. The Profile and Content of Polyphenolic Compounds and Antioxidant and Anti-Glycation Properties of Root Extracts of Selected Medicinal Herbs. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:468-473. [PMID: 38668914 PMCID: PMC11178571 DOI: 10.1007/s11130-024-01180-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 06/15/2024]
Abstract
The objective of our study was to analyse the extracts from six medicinal herb roots (marshmallow, dandelion, liquorice, angelica, burdock, and comfrey) in terms of antioxidant capacity (ABTS, DPPH) and inhibition of advanced glycation end product (AGEs) formation. The quantification of phenolic acids and flavonoids was analysed using the UHPLC-DAD-MS method. Fifteen polyphenolic compounds were detected in the studied herbs. The higher number of polyphenols were found in marshmallows (ten polyphenols), while the lowest was in comfrey (five compounds). Liquorice root revealed the highest individual phenolic concentration (382 µg/g dm) with the higher contribution of kaempferol-3-O-rutinoside. Comfrey root extract was characterised by the most abundant TPC (Total Phenolic Content) value (29.79 mg GAE/ g dm). Burdock and comfrey showed the strongest anti-AGE activity studies with the BDA-GLU model. Burdock root was also characterised by the highest anti-AGE activity in the BSA-MGO model. The highest antioxidant capacity was determined by ABTS (72.12 µmol TE/g dw) and DPPH (143.01 µmol TE/g dw) assays for comfrey extract. The p-coumaric acid content was significantly correlated with anti-AGE activity determined by the BSA-MGO model. This research sheds new light on the bioactivity of root herbs, explaining the role of p-coumaric acid in preventing diabetes.
Collapse
Affiliation(s)
- Patrycja Chociej
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, Olsztyn, 10-719, Poland
| | - Kamil Foss
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, Olsztyn, 10-719, Poland
| | - Monika Jabłońska
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, Olsztyn, 10-719, Poland.
| | | | - Tomasz Sawicki
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, Olsztyn, 10-719, Poland.
| |
Collapse
|
5
|
Ahn J, Hwang HH, Jung SY, Lee JY, Kim C, Choi HM, Gwon MJ, Kim MJ, Kwon Y, Woo J, Park B, Ko SG, Lee JY. Synthesis, Antiproliferative Activity and Molecular Docking Analysis of Both Enantiomerically Pure Decursin Derivatives as Anticancer Agents. Chem Pharm Bull (Tokyo) 2024; 72:498-506. [PMID: 38735699 DOI: 10.1248/cpb.c23-00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Using (S)-decursinol isolated from root of Angelica gigas Nakai (AGN), we semi-synthesized and evaluated a series of both enantiomerically pure decursin derivatives for their antiproliferative activities against A549 human lung cancer cells. All synthesized compounds showed a broad spectrum of inhibitory activities against the growth of A549 cells. Especially, compound (S)-2d with (E)-(furan-3-yl)acryloyl group showed the most potent activity (IC50: 14.03 µM) against A549 cancer cells as compared with the reference compound, decursin (IC50: 43.55 µM) and its enantiomer, (R)-2d (IC50: 151.59 µM). Western blotting assays indicated that (S)-2d more strongly inhibited Janus kinase 1 (JAK1) and signal transducer and activator of transcription activation 3 (STAT3) phosphorylation than decursin in a dose-dependent manner, while having no effect on CXCR7 overexpression and total STAT3 level. In addition, (S)-2d induced cell cycle arrest at G1 phase and subsequent apoptotic cell death in A549 cancer cells. Our combined analysis of molecular docking studies and biological data suggests that the inhibition of JAK1 with (S)-2d resulted in loss of STAT3 phosphorylation and inhibition of cell growth in A549 cancer cells. These overall results strongly suggest that (S)-2d (MRC-D-004) as a novel JAK1 inhibitor may have therapeutic potential in the treatment of A549 human lung cancers by targeting the JAK1/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Junseong Ahn
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University
| | - Hyun-Ha Hwang
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University
| | - Soo Yeon Jung
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University
| | - Ja Yeon Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University
| | - Choi Kim
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University
| | - Hye Min Choi
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University
| | - Min Ju Gwon
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University
| | - Min Ji Kim
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University
| | - Youngbin Kwon
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University
| | - Jaehyuk Woo
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University
| | - Bongkyu Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University
| | - Seong-Gyu Ko
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University
| | - Jae Yeol Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University
| |
Collapse
|
6
|
Stojanović NM, Ranđelović PJ, Simonović M, Radić M, Todorović S, Corrigan M, Harkin A, Boylan F. Essential Oil Constituents as Anti-Inflammatory and Neuroprotective Agents: An Insight through Microglia Modulation. Int J Mol Sci 2024; 25:5168. [PMID: 38791205 PMCID: PMC11121245 DOI: 10.3390/ijms25105168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Microglia are key players in the brain's innate immune response, contributing to homeostatic and reparative functions but also to inflammatory and underlying mechanisms of neurodegeneration. Targeting microglia and modulating their function may have therapeutic potential for mitigating neuroinflammation and neurodegeneration. The anti-inflammatory properties of essential oils suggest that some of their components may be useful in regulating microglial function and microglial-associated neuroinflammation. This study, starting from the ethnopharmacological premises of the therapeutic benefits of aromatic plants, assessed the evidence for the essential oil modulation of microglia, investigating their potential pharmacological mechanisms. Current knowledge of the phytoconstituents, safety of essential oil components, and anti-inflammatory and potential neuroprotective effects were reviewed. This review encompasses essential oils of Thymus spp., Artemisia spp., Ziziphora clinopodioides, Valeriana jatamansi, Acorus spp., and others as well as some of their components including 1,8-cineole, β-caryophyllene, β-patchoulene, carvacrol, β-ionone, eugenol, geraniol, menthol, linalool, thymol, α-asarone, and α-thujone. Essential oils that target PPAR/PI3K-Akt/MAPK signalling pathways could supplement other approaches to modulate microglial-associated inflammation to treat neurodegenerative diseases, particularly in cases where reactive microglia play a part in the pathophysiological mechanisms underlying neurodegeneration.
Collapse
Affiliation(s)
- Nikola M. Stojanović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (N.M.S.); (P.J.R.)
| | - Pavle J. Ranđelović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (N.M.S.); (P.J.R.)
| | - Maja Simonović
- Department of Psychiatry, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
- University Clinical Centre Niš, 18000 Niš, Serbia; (M.R.); (S.T.)
| | - Milica Radić
- University Clinical Centre Niš, 18000 Niš, Serbia; (M.R.); (S.T.)
- Department of Oncology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Stefan Todorović
- University Clinical Centre Niš, 18000 Niš, Serbia; (M.R.); (S.T.)
| | - Myles Corrigan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland; (M.C.); (A.H.)
| | - Andrew Harkin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland; (M.C.); (A.H.)
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland; (M.C.); (A.H.)
- Trinity Biomedical Sciences Institute (TBSI) and The Trinity Centre for Natural Product Research (NatPro), D02 R590 Dublin, Ireland
| |
Collapse
|
7
|
Elhawary EA, Nilofar N, Zengin G, Eldahshan OA. Variation of the essential oil components of Citrus aurantium leaves upon using different distillation techniques and evaluation of their antioxidant, antidiabetic, and neuroprotective effect against Alzheimer's disease. BMC Complement Med Ther 2024; 24:73. [PMID: 38308284 PMCID: PMC10835836 DOI: 10.1186/s12906-024-04380-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/26/2024] [Indexed: 02/04/2024] Open
Abstract
Citrus fruit essential oil is considered one of the widely studied essential oils while its leaves attract less attention although being rich in nearly the same composition as the peel and flowers. The leaves of bitter orange or sour orange (Citrus aurantium L.) were extracted using three different techniques namely; hydrodistillation (HD), steam distillation (SD), and microwave-assisted distillation (MV) to compare their chemical composition. The three essential oil samples were analyzed through GC/FID and GC/MS analyses. The samples were tested in vitro using different antioxidant techniques (DPPH, ABTS, CUPRAC, FRAP, PBD, and MCA), neuroprotective enzyme inhibitory activities (acetylcholine and butyl choline enzymes), and antidiabetic activities (α-amylase and α-glucosidase). The results showed that thirty-five volatile ingredients were detected and quantified. Monoterpenes represented the most abundant class in the three essential oils followed by sesquiterpenes. C. aurantium essential oil carried potential antioxidant activity where SD exhibited the highest antioxidant activity, with values arranged in the following order: FRAP (200.43 mg TE/g), CUPRAC (138.69 mg TE/g), ABTS (129.49 mg TE/g), and DPPH (51.67 mg TE/g). SD essential oil also presented the most potent α-amylase (0.32) inhibition while the MV essential oil showed the highest α-glucosidase inhibition (2.73 mmol ACAE/g), followed by HD (2.53 mmol ACAE/g), and SD (2.46 mmol ACAE/g). The SD essential oil exhibited the highest BChE and AChE inhibitory activities (3.73 and 2.06 mg GALAE/g), respectively). Thus, bitter orange essential oil can act as a potential source of potent antioxidant, antidiabetic, and neuroprotective activities for future drug leads.
Collapse
Affiliation(s)
- Esraa A Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Nilofar Nilofar
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", via dei Vestini 31, Chieti, 66100, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
- Center for Drug Discovery Research and Development, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
8
|
Li WJ, Cai YF, Ouyang Y, Li XY, Shi XL, Cao SX, Huang Y, Wu HW, Yang HJ. Quality evaluation of Angelica Sinensis Radix dispensing granules by integrating microvascular activity and chemical analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117236. [PMID: 37769884 DOI: 10.1016/j.jep.2023.117236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a new form of crude slices of traditional Chinese medicine (TCM), traditional Chinese medicine dispensing granules (TCMDGs) have been used for clinical formula. It is necessary to evaluate whether the chemical composition and biological activity are consistent among the different batches. Angelica Sinensis Radix (ASR), the root of Angelica sinensis (Oliv.) Diels, is one of the most frequently used medicinal materials in gynecology, senile and cardiovascular diseases. In this paper, the quality of TCMDGs is examined taking the Angelica Sinensis Radix dispensing granules (ASRDGs) as a typical case. AIM OF THE STUDY In this study, integrating bioequivalence and chemical analysis was used to evaluate the quality of dispensing granules taking ASRDGs as a typical case. MATERIALS AND METHODS According to the clinical efficacy of ASR, the intestinal absorption liquid of ASRDGs (IAL-ASRDGs) in 15 batches prepared by the everted gut sac (EGS) method was used to evaluate its effects of vasodilatation on isolated vascular rings. Then, the chemical profiling analysis of IAL-ASRDGs from the 15 batches was carried out by ultra-high performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry (UPLC-Q-TOF-MS). The components in IAL-ASRDGs were identified using mass spectrometry data and the obtained reference standards. Pearson correlation analysis was further performed for the selection of quality control markers based on the extracted ion chromatograms of the identified compounds and vasodilatory activities of different batches of IAL-ASRDGs. Moreover, the selected chemical components in ASRDGs were further verified by vasodilatory activities and quantitatively analyzed by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-QQQ-MS). RESULTS The IAL-ASRDGs showed favorable vasodilatory activities. There were significant differences among the 15 batches. The ranges of maximum vasodilation rate (%) and EC50 were 69.33 ± 7.16 to 19.52 ± 5.05 and 0.07-25.58 g raw materials/mL, respectively. A total of 46 compounds in IAL-ASRDGs were identified based on accurate mass measurements, fragmentation behavior and the reference standards. Among them, 8 compounds including butylidenephthalide, butylphthalide and senkyunolide A showed positive correlation with vasodilatory effect of IAL-ASRDGs. The 8 compounds were further verified, showing obvious vasodilatory activities. The content of the 8 compounds also showed some differences in 15 batches of ASRDGs. Among them, the content of ferulic acid, senkyunolide I and senkyunolide H varied the most in different batches of ASRDGs. By Pearson correlation analysis, the total content of senkyunolides (senkyunolide A, senkyunolide I and senkyunolide H) in ASRDGs was found to reflect the vasodilatory activity of ASRDGs mostly. CONCLUSION This study provides new strategies for the quality assessment by bioequivalence and explore the chemical quality control markers for ASRDGs.
Collapse
Affiliation(s)
- Wen-Jie Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yu-Feng Cai
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yi Ouyang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xian-Yu Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Beijing, 100700, China.
| | - Xiao-Lu Shi
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Beijing, 100700, China.
| | - Sheng-Xuan Cao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ying Huang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Beijing, 100700, China
| | - Hong-Wei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hong-Jun Yang
- China Academy of Chinese Medical Sciences, Beijing, 100700, China; Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Beijing, 100700, China.
| |
Collapse
|
9
|
Li S, Chiu TY, Jin X, Cao D, Xu M, Zhu M, Zhou Q, Liu C, Zong Y, Wang S, Yu K, Zhang F, Bai M, Liu G, Liang Y, Zhang C, Simonsen HT, Zhao J, Liu B, Zhao S. Integrating genomic and multiomic data for Angelica sinensis provides insights into the evolution and biosynthesis of pharmaceutically bioactive compounds. Commun Biol 2023; 6:1198. [PMID: 38001348 PMCID: PMC10674023 DOI: 10.1038/s42003-023-05569-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Angelica sinensis roots (Angelica roots) are rich in many bioactive compounds, including phthalides, coumarins, lignans, and terpenoids. However, the molecular bases for their biosynthesis are still poorly understood. Here, an improved chromosome-scale genome for A. sinensis var. Qinggui1 is reported, with a size of 2.16 Gb, contig N50 of 4.96 Mb and scaffold N50 of 198.27 Mb, covering 99.8% of the estimated genome. Additionally, by integrating genome sequencing, metabolomic profiling, and transcriptome analysis of normally growing and early-flowering Angelica roots that exhibit dramatically different metabolite profiles, the pathways and critical metabolic genes for the biosynthesis of these major bioactive components in Angelica roots have been deciphered. Multiomic analyses have also revealed the evolution and regulation of key metabolic genes for the biosynthesis of pharmaceutically bioactive components; in particular, TPSs for terpenoid volatiles, ACCs for malonyl CoA, PKSs for phthalide, and PTs for coumarin biosynthesis were expanded in the A. sinensis genome. These findings provide new insights into the biosynthesis of pharmaceutically important compounds in Angelica roots for exploration of synthetic biology and genetic improvement of herbal quality.
Collapse
Affiliation(s)
- Shiming Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
| | - Tsan-Yu Chiu
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Xin Jin
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Dong Cao
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
| | - Meng Xu
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Mingzhi Zhu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, 410128, Changsha, Hunan, China
| | - Qi Zhou
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Chun Liu
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Yuan Zong
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
| | - Shujie Wang
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Kang Yu
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Feng Zhang
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Mingzhou Bai
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
- Department of Biotechnology and Biomedicine, The Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| | - Guangrui Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
| | - Yunlong Liang
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
| | - Chi Zhang
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Henrik Toft Simonsen
- Department of Biotechnology and Biomedicine, The Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
- Laboratory of Plant Biotechnology, Université Jean Monnet, 23 Rue du Dr Michelon, 42000, Saint-Etienne, France
| | - Jian Zhao
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, 410128, Changsha, Hunan, China.
| | - Baolong Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, Qinghai, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, 810008, Xining, Qinghai, China.
| | - Shancen Zhao
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China.
- Beijing Life Science Academy, 102200, Beijing, China.
| |
Collapse
|
10
|
Kim GB, Seo K, Youn JU, Kwon IK, Park J, Park KH, Kim JS. Unsaturated Fatty Acids Complex Regulates Inflammatory Cytokine Production through the Hyaluronic Acid Pathway. Molecules 2023; 28:3554. [PMID: 37110788 PMCID: PMC10142694 DOI: 10.3390/molecules28083554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
In this study, we aimed to develop natural and/or functional materials with antioxidant and anti-inflammatory effects. We obtained extracts from natural plants through an oil and hot-water extraction process and prepared an extract composite of an effective unsaturated fatty acid complex (EUFOC). Furthermore, the antioxidant effect of the extract complex was evaluated, and the anti-inflammatory effect was explored by assessing its inhibitory effect on nitric oxide production through its HA-promoting effect. We conducted a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay to evaluate the cell viability of the EUFOC, and the results showed that EUFOC was not cytotoxic at the test concentrations. In addition, it showed no endogenous cytotoxicity in HaCaT (human keratinocyte) cells. The EUFOC showed excellent 1,1-diphenyl-2-picrylhydrazyl- and superoxide-scavenging abilities. Moreover, it exerted an inhibitory effect on NO production at concentrations that did not inhibit cell viability. The secretion of all the cytokines was increased by lipopolysaccharide (LPS) treatment; however, this was inhibited by the EUFOC in a concentration-dependent manner. In addition, hyaluronic acid content was markedly increased by the EUFOC in a dose-dependent manner. These results suggest that the EUFOC has excellent anti-inflammatory and antioxidant properties, and hence, it can be used as a functional material in various fields.
Collapse
Affiliation(s)
- Gi-Beum Kim
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
| | - Kwansung Seo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Ung Youn
- Eouidang Agricultural Company, Wanju, Jeonbuk 55360, Republic of Korea
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jinny Park
- Division of Hematology, Gacheon University Gil Medical Center, Incheon 21565, Republic of Korea
| | - Kwang-Hyun Park
- Department of Emergency Medicine and BioMedical Science Graduate Program (BMSGP), Chonnam National University, Gwangju 61469, Republic of Korea
| | - Jong-Suk Kim
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
| |
Collapse
|