1
|
Shao Y, Ren Z, Han Z, Chen L, Li Y, Xue XS. Predicting bond dissociation energies of cyclic hypervalent halogen reagents using DFT calculations and graph attention network model. Beilstein J Org Chem 2024; 20:1444-1452. [PMID: 38952960 PMCID: PMC11216094 DOI: 10.3762/bjoc.20.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
Although hypervalent iodine(III) reagents have become staples in organic chemistry, the exploration of their isoelectronic counterparts, namely hypervalent bromine(III) and chlorine(III) reagents, has been relatively limited, partly due to challenges in synthesizing and stabilizing these compounds. In this study, we conduct a thorough examination of both homolytic and heterolytic bond dissociation energies (BDEs) critical for assessing the chemical stability and functional group transfer capability of cyclic hypervalent halogen compounds using density functional theory (DFT) analysis. A moderate linear correlation was observed between the homolytic BDEs across different halogen centers, while a strong linear correlation was noted among the heterolytic BDEs across these centers. Furthermore, we developed a predictive model for both homolytic and heterolytic BDEs of cyclic hypervalent halogen compounds using machine learning algorithms. The results of this study could aid in estimating the chemical stability and functional group transfer capabilities of hypervalent bromine(III) and chlorine(III) reagents, thereby facilitating their development.
Collapse
Affiliation(s)
- Yingbo Shao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhiyuan Ren
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhihui Han
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Li Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yao Li
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, P. R. China,
| | - Xiao-Song Xue
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, P. R. China,
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| |
Collapse
|
2
|
Kumar R, Dohi T, Zhdankin VV. Organohypervalent heterocycles. Chem Soc Rev 2024; 53:4786-4827. [PMID: 38545658 DOI: 10.1039/d2cs01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This review summarizes the structural and synthetic aspects of heterocyclic molecules incorporating an atom of a hypervalent main-group element. The term "hypervalent" has been suggested for derivatives of main-group elements with more than eight valence electrons, and the concept of hypervalency is commonly used despite some criticism from theoretical chemists. The significantly higher thermal stability of hypervalent heterocycles compared to their acyclic analogs adds special features to their chemistry, particularly for bromine and iodine. Heterocyclic compounds of elements with double bonds are not categorized as hypervalent molecules owing to the zwitterionic nature of these bonds, resulting in the conventional 8-electron species. This review is focused on hypervalent heterocyclic derivatives of nonmetal main-group elements, such as boron, silicon, nitrogen, carbon, phosphorus, sulfur, selenium, bromine, chlorine, iodine(III) and iodine(V).
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, J C Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, 121006, Haryana, India.
| | - Toshifumi Dohi
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, 1038 University Drive, 126 HCAMS University of Minnesota Duluth, Duluth, Minnesota 55812, USA.
| |
Collapse
|
3
|
Lanzi M, Wencel-Delord J. Diaryl hypervalent bromines and chlorines: synthesis, structures and reactivities. Chem Sci 2024; 15:1557-1569. [PMID: 38303936 PMCID: PMC10829020 DOI: 10.1039/d3sc05382b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/14/2023] [Indexed: 02/03/2024] Open
Abstract
In the field of modern organic chemistry, hypervalent compounds have become indispensable tools for synthetic chemists, finding widespread applications in both academic research and industrial settings. While iodine-based reagents have historically dominated this research field, recent focus has shifted to the potent yet relatively unexplored chemistry of diaryl λ3-bromanes and -chloranes. Despite their unique reactivities, the progress in their development and application within organic synthesis has been hampered by the absence of straightforward, reliable, and widely applicable preparative methods. However, recent investigations have uncovered innovative approaches and novel reactivity patterns associated with these specialized compounds. These discoveries suggest that we have only begun to tap into their potential, implying that there is much more to be explored in this captivating area of chemistry.
Collapse
Affiliation(s)
- Matteo Lanzi
- Laboratoire d'Innovation Moléculaire etApplications (UMR CNRS 7042), Université deStrasbourg/Université deHaute Alsace, ECPM 67087 Strasbourg France
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire etApplications (UMR CNRS 7042), Université deStrasbourg/Université deHaute Alsace, ECPM 67087 Strasbourg France
- Institute of Organic Chemistry, JMU Würzburg Am Hubland Würzburg Germany
| |
Collapse
|
4
|
Huss C, Yoshimura A, Rohde GT, Mironova IA, Postnikov PS, Yusubov MS, Saito A, Zhdankin VV. Preparation and X-ray Structural Study of Dibenzobromolium and Dibenzochlorolium Derivatives. ACS OMEGA 2024; 9:2664-2673. [PMID: 38250385 PMCID: PMC10795028 DOI: 10.1021/acsomega.3c07512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/03/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Various five-membered cyclic dibenzobromolium salts (dibenzo[b,d]bromol-5-ium chloride, nitrate, hydrogen sulfate, dihydrogen phosphate, trifluoroacetate, and tetrafluoroborate) were prepared by diazotization-cyclization of 2'-bromo-[1,1'-biphenyl]-2-amine in solution of appropriate acids. The chlorolium analogues (iodide, trifluoroacetate, and tetrafluoroborate) were obtained by a similar procedure. Additional dibenzohalolium derivatives (dibenzo[b,d]bromol-5-ium and dibenzo[b,d]chlorol-5-ium azides, bis(trifluoromethanesulfonyl)imidates, thiocyanates, and trifluoromethanesulfonates) were prepared by anion exchange. Structures of ten of these dibenzohalolium derivatives were established by X-ray analysis. Bond distances and angles for the halogen atoms in different dibenzohalolium derivatives were summarized and discussed.
Collapse
Affiliation(s)
- Christopher
D. Huss
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Akira Yoshimura
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | | | - Irina A. Mironova
- Research
School of Chemistry and Applied Biomedical Sciences, The Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Pavel S. Postnikov
- Research
School of Chemistry and Applied Biomedical Sciences, The Tomsk Polytechnic University, Tomsk 634050, Russia
- Department
of Solid-State Engineering, University of
Chemistry and Technology, Prague 16628, Czech Republic
| | - Mekhman S. Yusubov
- Research
School of Chemistry and Applied Biomedical Sciences, The Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Akio Saito
- Division
of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-23-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
5
|
Yoshida Y, Aso N, Karatsu T, Mino T, Sakamoto M. Intramolecular Azo Coupling Reaction of Binaphthyl Compounds: Synthesis of Pyrazole-Containing Helicene-Like Molecules. Org Lett 2023; 25:3412-3416. [PMID: 37154527 DOI: 10.1021/acs.orglett.3c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A method for accessing pyrazole-containing helicene-like molecules from easily accessible NOBIN derivatives was developed. The reaction proceeded efficiently via diazonium salt intermediates, which provided a series of helicene-like molecular products in yields of 77%-89% regardless of their steric and electronic natures. The photophysical properties of the products were investigated. The 3,3'-disubstituted molecules showed a characteristic blue shift in their emission spectra. Product derivatizations were conducted, and interesting reactivities toward nucleophiles were observed.
Collapse
Affiliation(s)
- Yasushi Yoshida
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Naoyuki Aso
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Takashi Karatsu
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Takashi Mino
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Masami Sakamoto
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| |
Collapse
|